Plant Molecular Biology

, Volume 52, Issue 2, pp 247–258 | Cite as

Transgene integration, organization and interaction in plants

  • Ajay Kohli
  • Richard M. Twyman
  • Rita Abranches
  • Eva Wegel
  • Eva Stoger
  • Paul Christou


It has been appreciated for many years that the structure of a transgene locus can have a major influence on the level and stability of transgene expression. Until recently, however, it has been common practice to discard plant lines with poor or unstable expression levels in favor of those with practical uses. In the last few years, an increasing number of experiments have been carried out with the primary aim of characterizing transgene loci and studying the fundamental links between locus structure and expression. Cereals have been at the forefront of this research because molecular, genetic and cytogenetic analysis can be carried out in parallel to examine transgene loci in detail. This review discusses what is known about the structure and organization of transgene loci in cereals, both at the molecular and cytogenetic levels. In the latter case, important links are beginning to be revealed between higher order locus organization, nuclear architecture, chromatin structure and transgene expression.

cereal transformation clean DNA fluorescent in situ hybridization (FISH) transgene integration transgene organization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abranches, R., Santos, A.P., Wegel, E., Williams, S., Castilho, A., Christou, P., Shaw, P. and Stoger, E. 2000. Widely separated multiple transgene integration sites in wheat chromosomes are brought together at interphase. Plant J. 24: 713–723.Google Scholar
  2. Azhakanandam, K., Mccabe, M.S., Power, J.BT-DNA transfer, integration, expression and inheritance in rice: effects of plant genotype and Agrobacterium super-virulence. J. Plant. Physiol. 157: 429–439.Google Scholar
  3. Barakat, A., Gallois, P., Raynal, M., Guiderdoni, E., Delseny, M. and Bernardi, G. 2000. The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice. FEBS Lett. 471: 161–164.Google Scholar
  4. Breitler, J.C., Labeyrie. A., Meynard. D., Legavre. T. and Guiderdoni, E. 2002. Efficient microprojectile bombardment-mediated transformation of rice using gene cassettes. Theor. Appl. Genet. 104: 709–719.Google Scholar
  5. Chan, M.T., Lee, T.M. and Chang, H.H. 1992. Transformation of indica rice (Oryza sativa) mediated by Agrobacterium tumefaciens. Plant Cell Physiol. 33: 577–583.Google Scholar
  6. Chen, L.L., Marmey, P., Taylor, N.J., Brizard, J.P., Espinoza, C., D'Cruz, P., Huet, H., Zhang, S.P., de Kochko, A., Beachy, R.N. and Fauquet, C.M. 1998. Expression and inheritance of multiple transgenes in rice plants. Nature Biotechnol. 16: 1060–1064.Google Scholar
  7. Cheng, M., Fry, J.E., Pang, S.Z., Zhou, H.P., Hironaka, C.M., Duncan, D.R., Conner, T.W. and Wan, Y.C. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115: 971–980.Google Scholar
  8. Christou, P. 1992. Genetic-transformation of crop plants using microprojectile bombardment. Plant J. 2: 275–281.Google Scholar
  9. Christou, P. 1995. Particle bombardment. Meth. Cell Biol. 50: 375–382.Google Scholar
  10. Chyi, Y.S., Jorgensen, R.A., Goldstein, D., Tanksley, S.D. and Loaizafigueroa, F. 1986. Locations and stability of Agrobacterium-mediated transfer DNA insertions in the Lycopersicon genome. Mol. Gen. Genet. 204: 64–69.Google Scholar
  11. Cluster, P.D., Odell, M., Metzlaff, M. and Flavell, R.B. 1996. Details of T-DNA structural organization from a transgenic petunia population exhibiting co-suppression. Plant. Mol. Biol. 32: 1197–1203.Google Scholar
  12. Coates, D., Taliercio, E.W. and Gelvin, S.B. 1987. Chromatin structure of integrated T-DNA in crown gall tumors. Plant Mol. Biol. 8: 159–168.Google Scholar
  13. Cook, P.R. 1999. Molecular biology - the organization of replication and transcription. Science. 284: 1790–1795.Google Scholar
  14. Crossway, A., Oakes, J.V., Irvine, J.M., Ward, B., Knauf, V.C. and Shewmaker, C.K. 1986. Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol. Gen. Gent. 202: 179–185.Google Scholar
  15. Datta, S.K., Peterhans, A., Datta, K. and Potrykus, I. 1990. Genetically engineered fertile indica-rice recovered from protoplasts. BioTechnol. 8: 736–740.Google Scholar
  16. DeBlock, M. and Debrouwer, D. 1991. Two T-DNAs cotransformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor. Appl. Genet. 82: 257–263.Google Scholar
  17. Debuck, S., Jacobs, A., van Montagu, M. and Depicker, A. 1999. The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant. J. 20: 295–304.Google Scholar
  18. Deneve, M., Debuck, S., Jacobs, A., vanMontagu, M. and Depicker, A. 1997. T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant. J. 11: 15–29.Google Scholar
  19. Deroles, S.C. and Gardner, R.C. 1988. Analysis of the T-DNA structure in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Mol. Biol.11: 365–377.Google Scholar
  20. Dong, J.J., Kharb, P., Teng, W.M. and Hall, T.C. 2001. Characterization of rice transformed via an Agrobacterium-mediated inflorescence approach. Mol. Breeding 7: 187–194.Google Scholar
  21. Dubey, R.K., Srivastava, A.K., Kumar, S. Luthra, R. and Varsha, M. 1997. Microprojectile mediated plant transformation: a bibliographic search. Euphytica 95: 269–294.Google Scholar
  22. Ehrlich, S.D., Bierne, H., Dalencon, E., Vilette, D., Petranovic, M., Noirot, P. and Michel, B. 1993. Mechanisms of illegitimate recombination. Gene 135: 161–166.Google Scholar
  23. Elmayan, T and Vaucheret, H. 1996. Expression of single copies of a strongly expressed 35S transgene can be silenced posttranscriptionally. Plant J. 9: 787–797.Google Scholar
  24. Feldmann, K.A. 1991 T-DNA insertion mutagenesis in Arabidopsis-mutational spectrum. Plant J. 1: 71–82.Google Scholar
  25. Frame, B.R., Drayton, P.R., Bagnall, S.V., Lewnau, C.J., Bullock, W.P., Wilson, H.M., Dunwell, J.M., Thompson, J.A. and Wang, K. 1994. Production of fertile transgenic maize plants by siliconcarbide whisker-mediated transformation. Plant J. 6: 941–948.Google Scholar
  26. Fransz, P.F., Stam, M., Montijn, B., tenHoopen, R., Wiegant, J., Kooter, J.M., Oud, O. and Nanninga, N. 1996. Detection of single-copy genes and chromosome rearrangements in Petunia hybrida by fluorescence in situ hybridization. Plant J. 9: 767–774.Google Scholar
  27. Fromm, M., Taylor, L.P. and Walbot, V. 1985. Expression of genes transferred into monocot and dicot plant-cells by electroporation. Proc. Natl. Acad. Sci. USA. 82: 5824–5828.Google Scholar
  28. Fu, X.D., Duc, L.T., Fontana, S., Bong, B.B., Tinjuangjun, P., Sudhakar, D., Twyman, R.M., Christou, P. and Kohli, A. 2000. Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Res. 9: 11–19.Google Scholar
  29. Gelvin, S.B. 1998. Multigene plant transformation: more is betterai] Nature Biotechnol. 16: 1009–1010.Google Scholar
  30. Gelvin, S.B. 2000. Agrobacterium and plant proteins involved in T-DNA transfer and integration. Annu. Rev. Plant Physiol. 51: 223–256.Google Scholar
  31. Gheysen, G., Villarroel, R. and van Montagu, M. 1991. Illegitimate recombination in plants - a model for T-DNA integration. Genes & Dev. 5: 287–297.Google Scholar
  32. Gorbunova, V. and Levy, A.A. 1997. Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res. 25: 4650–4657.Google Scholar
  33. Grevelding, C., Fantes, V., Kemper, E., Schell, J. and Masterson, R. 1993. Single-copy T-DNA insertions in Arabidopsis are the predominant form of integration in root derived transgenics, whereas multiple insertions are found in leaf-disks. Plant Mol. Biol. 23: 847–860.Google Scholar
  34. Hadi, M.Z., McMullen, M.D. and Finer, J.J. 1996. Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep. 15: 500–505.Google Scholar
  35. Iglesias, V.A., Moscone, E.A., Papp, I., Neuhuber, F., Michalowski, S., Phelan, T., Spiker, S., Matzke, M.A. and Matzke, A.J.M. 1997. Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 9: 1251–1264.Google Scholar
  36. Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T. and Kumashiro, T. 1996. High efficiency transformation of maize (Zea mays) mediated by Agrobacterium tumefaciens. Nature Biotechnol. 14: 745–750.Google Scholar
  37. Jackson, S.A., Zhang, P., Chen, W.P., Phillips, R.L., Friebe, B., Muthukrishnan, S. and Gill, B.S. 2001. High-resolution structural analysis of biolistic transgene integration into the genome of wheat. Theor. Appl. Genet. 103: 56–62.Google Scholar
  38. Jones, J.D.G., Gilbert, D.E., Grady, K.L. and Jorgensen, R.A. 1987. T-DNA structure and gene-expression in petunia plants transformed by Agrobacterium-tumefaciens c58 derivatives. Mol. Gen. Genet. 207: 478–485.Google Scholar
  39. Jongsma, M., Koornneef, M., Zabel, P. and Hille, J. 1987. Tomato protoplast DNA transformation - physical linkage and recombination of exogenous DNA-sequences. Plant Mol. Biol. 8: 383–394.Google Scholar
  40. Jorgensen, R., Snyder, C. and Jones, J.D.G. 1987. T-DNA is organized predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens c58 derivatives. Mol. Gen. Genet. 207: 471–477.Google Scholar
  41. Kado, C.I. 1998. Agrobacterium-mediated horizontal gene transfer. Genet. Eng. 20: 1–24Google Scholar
  42. Khrustaleva, L.I. and Kik, C. 2001. Localization of single-copy T-DNA insertion in transgenic shallots (Allium cepa) by using ultra-sensitive FISH with tyramide signal amplification. Plant J. 25: 699–707.Google Scholar
  43. Klein, T.M., Wolf, E.D., Wu, R. and Sanford, J.C. 1987. Highvelocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70–73.Google Scholar
  44. Kohli, A., Griffiths, S., Palacios, N., Twyman, R.M., Vain, P., Laurie, D.A. and Christou, P. 1999. Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. Plant J. 17: 591–601.Google Scholar
  45. Kohli, A., Leech, M., Vain, P., Laurie, D.A. and Christou, P. 1998. Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc. Natl. Acad. Sci. USA. 95: 7203–7208.Google Scholar
  46. Komari, T., Hiei, Y., Ishida, Y., Kumashiro, T. and Kubo, T. 1998. Advances in cereal gene transfer. Curr. Opin. Plant Biol. 1: 161–165.Google Scholar
  47. Kononov, M.E., Bassuner, B. and Gelvin, S.B. 1997. Integration of T-DNA binary vector #x2018;backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant. J. 11: 945–957.Google Scholar
  48. Krizkova, L. and Hrouda, M. 1998. Direct repeats of T-DNA integrated in tobacco chromosome: characterization of junction regions. Plant. J. 16: 673–680.Google Scholar
  49. Kumar, S and Fladung, M. 2001. Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta 213: 731–740Google Scholar
  50. Kumar, S. and Fladung, M. 2000. Transgene repeats in aspen: molecular characterization suggests simultaneous integration of independent T-DNAs into receptive hotspots in the host genome. Mol. Gen. Genet. 264: 20–28.Google Scholar
  51. Lindsey, K., Wei, W.B., Clarke, M.C., McArdle, H.F., Rooke, L.M. and Topping, J.F. 1993. Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plants. Transgenic Res. 2: 33–47.Google Scholar
  52. Matsumoto, S., Ito, Y., Hosoi, T., Takahashi, Y. and Machida, Y. 1990. Integration of Agrobacterium T-DNA into a tobacco chromosome-possible involvement of DNA homology between T-DNA and plant DNA. Mol. Gen. Genet. 224: 309–316.Google Scholar
  53. Mayerhofer, R. Konczkalman, Z., Nawrath, C., Bakkeren, G., Crameri, A., Angelis, K., Redei, G.P., Schell, J., Hohn, B. and Koncz, C. 1991. T-DNA integration - a mode of illegitimate recombination in plants. EMBO J. 10: 697–704.Google Scholar
  54. McKnight, T.D., Lillis, M.T. and Simpson, R.B. 1987. Segregation of genes transferred to one plant-cell from two separate Agrobacterium strains. Plant. Mol. Biol. 8: 439–445.Google Scholar
  55. Mehlo, L., Mazithulela, G., Twyman, R.M., Boulton, M.I., Davies, J.W. and Christou, P. 2000. Structural analysis of transgene rearrangements and effects on expression in transgenic maize plants generated by particle bombardment. Maydica 45: 277–287.Google Scholar
  56. Muller, A.E., Kamisugi, Y., Gruneberg, R., Niedenhof, I., Horold, R.J. and Meyer, P. 1999. Palindromic sequences and A plus T-rich DNA elements promote illegitimate recombination in Nicotiana tabacum. J. Mol. Biol. 291: 29–46.Google Scholar
  57. Mysore, K.S., Nam, J and Gelvin, S.B. 2000. An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc. Natl. Acad. Sci. USA. 97: 948–953.Google Scholar
  58. Nam, J., Matthysse, A.G. and Gelvin, S.B. 1997. Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9: 317–333.Google Scholar
  59. Nam, J., Mysore, K.S. and Gelvin, S.B. 1998. Agrobacterium tumefaciens transformation of the radiation hypersensitive Arabidopsis thaliana mutants uvh1 and rad5. Mol. Plant Microbe. Interact. 11: 1136–1141.Google Scholar
  60. Nam, J., Mysore, K.S., Zheng, C., Knue, M.K., Matthysse, A.G. and Gelvin, S.B. 1999. Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol. Gen. Genet. 261: 429–438.Google Scholar
  61. Nandadeva, Y.L., Lupi, C. G., Meyer, C.S., Devi, P.S., Potrykus, I. and Bilang, R. 1999. Microprojectile-mediated transient and integrative transformation of rice embryogenic suspension cells: effects of osmotic cell conditioning and of the physical configuration of plasmid DNA. Plant Cell Rep. 18: 500–504.Google Scholar
  62. Offringa, R., deGroot, M.J.A., Haagsman, H.J., Does, M.P., Vandenelzen, P.J.M. and Hooykaas, P.J.J. 1990. Extrachromosomal homologous recombination and gene targeting in plant-cells after Agrobacterium mediated transformation. EMBO J. 9: 3077–3084.Google Scholar
  63. Papp, I., Iglesias, V.A., Moscone, E.A., Michalowski, S., Spiker, S., Park, Y.D., Matzke, M.A. and Matzke, A.J.M. 1996. Structural instability of a transgene locus in tobacco is associated with aneuploidy. Plant J. 10: 469–478.Google Scholar
  64. Park, Y.D., Papp, I., Moscone, E.A., Iglesias, V.A., Vaucheret, H., Matzke, A.J.M. and Matzke, M.A. 1996. Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J. 9: 183–194.Google Scholar
  65. Pawlowski, W.P. and Somers, D.A. 1998. Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc. Natl. Acad. Sci. USA. 95: 12106–12110.Google Scholar
  66. Pedersen, C., Zimny, J., Becker, D., Janhne-Gartner, A. and Lorz, H. 1997. Localization of introduced genes on the chrmomosomes of transgenic barley, wheat and triticale by fluorescence in situ hybridization. Theor. Appl. Genet. 94: 749–757.Google Scholar
  67. Pombo, A., Jones, E., Iborra, F.J., Kimura, H., Sugaya, K., Cook, P.R. and Jackson, D.A. 2000. Specialized transcription factories within mammalian nuclei. Crit. Rev. Euk. Gene Expr. 10: 21–29.Google Scholar
  68. Porsch, P., Jahnke, A. and During, K. 1998. A plant transformation vector with a minimal T-DNA II. Irregular integration patterns of the T-DNA in the plant genome. Plant. Mol. Biol. 37: 581–585.Google Scholar
  69. Puchta, H., Kocher, S. and Hohn, B. 1992. Extrachromosomal homologous DNA recombination in plant-cells is fast and is not affected by CpG methylation. Mol. Cell. Biol. 12: 3372–3379.Google Scholar
  70. Ramanathan, V. and Veluthambi, K. 1995. Transfer of non-TDNA portions of the Agrobacterium-tumefaciens Ti plasmid pTiA6 from the left terminus of T-L-DNA. Plant Mol. Biol.28: 1149–1154.Google Scholar
  71. Register, J.C., Peterson, D.J., Bell, P.J., Bullock, W.P., Evans, I.J., Frame, B., Greenland, A.J., Higgs, N.S., Jepson, I., Jiao, S.P., Lewnau, C.J., Sillick, J.M. and Wilson, H.M. 1994. Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol. Biol. 25: 951–961.Google Scholar
  72. Salomon, S. and Puchta, H. 1998. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO. J. 17: 6086–6095.Google Scholar
  73. Salvo-Garrido, H., Travella, S., Schwarzacher, T., Harwood, W.A. and Snape, J. 2001. An efficient method for the physical mapping of transgenes in barley using in situ hybridization. Genome 44: 104–110.Google Scholar
  74. Sanford, J.C., Smith, F.D. and Russell, J.A. 1993. Optimizing the biolistic process for different biological applications. Methods Enzymol. 217: 483–509.Google Scholar
  75. Sarmento, G.G., Alpert, K., Tang, F.A. and Punja, Z.K. 1992. Factors influencing Agrobacterium tumefaciens mediated transformation and expression of kanamycin resistance in pickling cucumber. Plant Cell Tiss. Org. Culture 31: 185–193.Google Scholar
  76. Sawasaki, T., Takahashi, M., Goshima, N. and Morikawa, H. 1998. Structures of transgene loci in transgenic Arabidopsis plants obtained by particle bombardment: junction regions can bind to nuclear matrices. Gene 218: 27–35.Google Scholar
  77. Sonti, R.V., Chiurazzi, M., Wong, D., Davies, C.S., Harlow, G.R., Mount, D.W. and Signer, E.R. 1995. Arabidopsis mutants de-ficient in T-DNA integration. Proc. Natl. Acad. Sci. USA. 92: 11786–11790.Google Scholar
  78. Svitashev, S., Ananiev, E., Pawlowski, W.P. and Somers, D.A. 2000. Association of transgene integration sites with chromosome rearrangements in hexaploid oat. Theor. Appl. Genet. 100: 872–880.Google Scholar
  79. Svitashev, S.K. and Somers, D.A. 2001. Genomic interspersions determine the size and complexity of transgene loci in transgenic plants produced by microprojectile bombardment. Genome 44: 691–697.Google Scholar
  80. Szentirmay, M.N. and Sawadogo, M. 2000. Spatial organization of RNA polymerase II transcription in the nucleus. Nucleic Acids Res. 28: 2019–2025.Google Scholar
  81. Tax, F.E. and Vernon, D.M. 2001. T-DNA associated duplication translocations in Arabidopsis. Implications for mutant analysis and functional genomics. Plant Physiol. 126: 1527–1538.Google Scholar
  82. ten Hoopen, R., Montijn, B.M., Veuskens, J.T.M., Oud, O.J.L. and Nanninga, N. 1999. The spatial localization of T-DNA insertions in petunia interphase nuclei: consequences for chromosome organization and transgene insertion sites. Chromosome Res. 7: 611–623.Google Scholar
  83. ten Hoopen, R., Robbins, T.P., Fransz, P.F., Montijn, B.M., Oud, O., Gerats, A.G.M. and Nanninga, N. 1996. Localization of TDNA insertions in petunia by fluorescence in situ hybridization: physical evidence for suppression of recombination. Plant Cell 8: 823–830.Google Scholar
  84. Tingay, S., Mcelroy, D., Kalla, R., Fieg, S., Wang, M.B., Thornton, S. and Brettell, R. 1997. Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11: 1369–1376.Google Scholar
  85. Tinland, B. 1996. The integration of T-DNA into plant genomes. Trends Plant Sci. 1: 178–184.Google Scholar
  86. Tinland, B., Schoumacher, F., Gloeckler, V., Bravo-Angel, A.M. and Hohn, B. 1995. The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome. EMBO J. 14: 3585–3595.Google Scholar
  87. Twyman, R.M., Chrisotu, P., and Stoger, E. 2002. Genetic transformation of plants and their cells. In: Oksman-Caldentey, K.-M. and Barz, W.H. (eds.) Plant Biotechnology and Transgenic Plants, Marcel-Dekker Inc. NY, pp. 111–141.Google Scholar
  88. Tzfira, T., Rhee, Y., Chen, M.H., Kunik, T. and Citovsky, V. 2000. Nucleic acid transport in plant-microbe interactions: the molecules that walk through the walls. Annu. Rev. Microbiol. 54: 187–219.Google Scholar
  89. Van der Graaff, E. and Hooykaas, P.J.J. 1996. Improvements in the transformation of Arabidopsis thaliana c24 leaf-discs by Agrobacterium tumefaciens. Plant Cell Rep. 15: 572–577.Google Scholar
  90. Wallroth, M., Gerats, A.G.M., Rogers, S.G., Fraley, R.T. and Horsch, R.B. 1986. Chromosomal localization of foreign genes in Petunia hybrida. Mol. Gen. Genet. 202: 6–15.Google Scholar
  91. Wang, J., Lewis, M.E., Whallon, J.H. and Sink, K.C. 1995. Chromosomal mapping of T-DNA inserts in transgenic petunia by in situ hybridization. Transgenic Res. 4: 241–246.Google Scholar
  92. Wenck, A., Czako, M., Kanevski, I. and Marton, L. 1997. Frequent co-linear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol. Biol. 34: 913–922.Google Scholar
  93. Wolters, A.M.A., Trindade, L.M., Jacobsen, E. and Visser, R.G.F. 1998. Fluorescence in situ hybridization on extended DNA fibers as a tool to analyze complex T-DNA loci in potato. Plant J. 13: 837–847.Google Scholar
  94. Yin, Z. and Wang, G.L. 2000. Evidence of multiple complex patterns of T-DNA integration into the rice genome. Theor. Appl. Genet. 100: 461–470.Google Scholar
  95. Zambryski, P. 1988. Basic processes underlying Agrobacteriummediated DNA transfer to plant cells. Annu. Rev. Genet. 22: 1–30.Google Scholar
  96. Zhao, Z.Y., Cai, T.S., Tagliani, L., Miller, M., Wang, N., Pang, H., Rudert, M., Schroeder, S., Hondred, D., Seltzer, J. and Pierce, D. 2000. Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44: 789–798.Google Scholar
  97. Zupan, J., Muth, T.R., Draper, O. and Zambryski, P. 2000. The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J. 23: 11–28.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Ajay Kohli
    • 1
  • Richard M. Twyman
    • 2
  • Rita Abranches
    • 3
  • Eva Wegel
    • 3
  • Eva Stoger
    • 4
  • Paul Christou
    • 5
  1. 1.Rexagen Corporation, Genome Centre, Norwich Bio-IncubatorNorwichUnited Kingdom
  2. 2.Department of BiologyUniversity of York, HeslingtonYorkUnited Kingdom
  3. 3.Department of Cell and Developmental BiologyJohn Innes CentreNorwichUnited Kingdom
  4. 4.Biologie VII, RWTH AachenAachenGermany
  5. 5.Fraunhofer Institute for Molecular Biology and Applied EcologySchmallenbergGermany

Personalised recommendations