Plant Molecular Biology

, Volume 52, Issue 1, pp 161–176 | Cite as

A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome

  • Alexandra Forsbach
  • Daniel Schubert
  • Berthold Lechtenberg
  • Mario Gils
  • Renate Schmidt

Abstract

T-DNA flanking sequences were isolated from 112 Arabidopsis thaliana single-copy T-DNA lines and sequence mapped to the chromosomes. Even though two T-DNA insertions mapped to a heterochromatic domain located in the pericentromeric region of chromosome I, expression of reporter genes was detected in these transgenic lines. T-DNA insertion did not seem to be biased toward any of Arabidopsis' five chromosomes. The observed distribution of T-DNA copies in intergenic sequence versus gene sequence (i.e. 5′-upstream regions, coding sequences and 3′-downstream regions) appeared randomly. An evaluation of T-DNA insertion frequencies within gene sequence revealed that integration into 5′-upstream regions occurred more frequently than expected, whereas insertions in coding sequences (exons and introns) were found less frequently than expected based on random distribution predictions. In the majority of cases, single-copy T-DNA insertions were associated with small or large rearrangements such as deletions and/or duplications of target site sequences, deletions and/or duplications of T-DNA sequences, and gross chromosomal rearrangements such as translocations. The accuracy of integration was similarly high for both left- and right-border sequences. These results may be called upon when making detailed molecular analyses of transgenic plants or T-DNA induced mutants.

Agrobacterium tumefaciens Arabidopsis thaliana chromosome sequence map heterochromatin single-copy T-DNA insertion T-DNA flanking sequence translocation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.Google Scholar
  2. Arabidopsis Genome Initiative. 2000. Sequence and analysis of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.Google Scholar
  3. Azpiroz-Leehan, R. and Feldmann K.A. 1997. T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet. 13: 152–156.Google Scholar
  4. Bechtold, N., Ellis, J. and Pelletier, G. 1993. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad. Sci. Paris 316: 1194–1199.Google Scholar
  5. Bundock, P., van Attikum, H., den Dulk-Ras, A. and Hooykaas, P.J. 2002. Insertional mutagenesis in yeasts using T-DNA from Agrobacterium tumefaciens. Yeast 19: 529–536.Google Scholar
  6. Castle, L.A., Errampalli, D., Atherton, T.L., Franzmann, L.H., Yoon, E.S., Meinke, D.W. 1993. Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol. Gen. Genet. 241: 504–514.Google Scholar
  7. Clough, S.J. and Bent, A.F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.Google Scholar
  8. Cold Spring Harbor Laboratory, Washington University Genome Sequencing Center, and PE Biosystems Arabidopsis Sequencing Consortium. 2000. The complete sequence of a heterochromatic island from a higher eukaryote. Cell 100: 377–386.Google Scholar
  9. Dellaporta, S.L., Wood, J. and Hicks, J.B. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1: 19–21.Google Scholar
  10. De Neve, M., De Buck, S., Jacobs, A., Van Montagu, M. and Depicker, A. 1997. T-DNA integration patterns in cotransformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J. 11: 15–29.Google Scholar
  11. Dujon, B. 1996. The yeast genome project: what did we learn? Trends Genet. 12: 263–270.Google Scholar
  12. Gheysen, G., Van Montagu, M. and Zambyski, P. 1987. Integration of Agrobacterium tumefaciens transfer DNA (T-DNA) involves rearrangements of target plant DNA sequences. Proc. Natl. Acad. Sci. USA 84: 6169–6173.Google Scholar
  13. Gheysen, G., Villarroel, R. and Van Montagu, M. 1991. Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev. 5: 287–297.Google Scholar
  14. Haupt, W., Fischer, T.C., Winderl, S., Fransz, P. and Torres-Ruiz, R.A. 2001. The centromere 1 (CEN1) region of Arabidopsis thaliana: architecture and functional impact of chromatin. Plant J. 27: 285–296.Google Scholar
  15. Herman, L., Jacobs, A., Van Montagu, M. and Depicker, A. 1990. Plant chromosome/marker gene fusion assay for study of normal and truncated T-DNA integration events. Mol. Gen. Genet. 224: 248–256.Google Scholar
  16. Höfgen, R. and Willmitzer, L. 1988. Storage of competent cells for Agrobacterium transformation. Nucl. Acids Res. 16: 9877.Google Scholar
  17. Iglesias, V.A., Moscone, E.A., Papp, I., Neuhuber, F., Michalowski, S., Phelan, T., Spiker, S., Matzke, M. and Matzke, A.J. 1997. Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell9: 1251–1264.Google Scholar
  18. Kertbundit, S., De Greve, H., Deboeck, F., Van Montagu, M. and Hernalsteens, J.P. 1991. In vivo random β-glucuronidase gene fusions in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 88:5212–5216.Google Scholar
  19. Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Korber, H., Redei, G.P. and Schell, J. 1989. High-frequency T-DNAmediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86: 8467–8471.Google Scholar
  20. Kononov, M.E., Bassuner, B. and Gelvin, S.B. 1997. Integration of T-DNA binary vector 'backbone' sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J. 11: 945–957.Google Scholar
  21. Laufs, P., Autran, D. and Traas, J., 1999. A chromosomal paracentric inversion associated with T-DNA integration in Arabidopsis. Plant J. 18: 131–139</del>.Google Scholar
  22. Lessl, M. and Lanka, E. 1994. Common mechanisms in bacterial conjugation and Ti-mediated T-DNA transfer to plant cells. Cell 77: 321–324.Google Scholar
  23. Martineau, B., Voelker, T.A. and Sanders, R.A. 1994. On defining T-DNA. Plant Cell 6: 1032–1033.Google Scholar
  24. Mathur, J., Szabados, L., Schaefer, S., Grunenberg, B., Lossow, A., Jonas-Straube, E., Schell, J., Koncz, C. and Koncz-Kalman, Z. 1998. Gene identification with sequenced T-DNA tags generated by transformation of Arabidopsis cell suspension. Plant J. 13: 707–716.Google Scholar
  25. Mayerhofer, R., Koncz-Kalman, Z., Nawrath, C., Bakkeren, G., Crameri, A., Angelis, K., Redei, G.P., Schell, J., Hohn, B. and Koncz, C. 1991. T-DNA integration: a mode of illegitimate recombination in plants. EMBO J. 10: 697–704.Google Scholar
  26. McKinney, E.C., Ali, N., Traut, A., Feldmann, K.A., Belostotsky, D.A., McDowell, J.M., Meagher, R.B. 1995. Sequence-based identification of T-DNA insertion mutations in Arabidopsis: actin mutants act2–1 and act4–1. Plant J. 8: 613–622.Google Scholar
  27. Meissner, R.C., Jin, H., Cominelli, E., Denekamp, M., Fuertes, A., Greco, R., Kranz, H.D., Penfield, S., Petroni, K., Urzainqui, A., Martin, C., Paz-Ares, J., Smeekens, S., Tonelli, C., Weisshaar, B., Baumann, E., Klimyuk, V., Marillonnet, S., Patel, K., Speulman, E., Tissier, A.F., Bouchez, D., Jones, J.D., Pereira, A., Wisman, E. and Bevan, M. 1999. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell 11: 1827–1840.Google Scholar
  28. Nacry, P., Camilleri, C., Courtial, B., Caboche, M. and Bouchez, D. 1998. Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149: 641–650.Google Scholar
  29. Neuhuber, F., Park, Y.D., Matzke, A.J. and Matzke, M.A. 1994. Susceptibility of transgene loci to homology-dependent gene silencing. Mol. Gen. Genet. 244: 230–241.Google Scholar
  30. Ochman, H., Gerber, A.S. and Hartl, D.L. 1988. Genetic applications of an inverse polymerase chain reaction. Genetics 120: 621–623.Google Scholar
  31. Ohba, T., Yoshioka, Y., Machida, C. and Machida, Y. 1995. DNA rearrangement associated with the integration of T-DNA in tobacco: an example for multiple duplications of DNA around the integration target. Plant J. 7: 157–164.Google Scholar
  32. Parinov, S., Sevugan, M., De, Y., Yang, W.C., Kumaran, M. and Sundaresan, V. 1999. Analysis of flanking sequences from dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11: 2263–2270.Google Scholar
  33. Raina, S, Mahalingam, R., Chen, F. and Fedoroff, N. 2002. A collection of sequenced and mapped Ds transposon insertion sites in Arabidopsis thaliana. Plant Mol. Biol. 50: 93–110.Google Scholar
  34. Rossi, L., Hohn, B. and Tinland, B. 1996. Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl. Acad. Sci. USA 9: 126–130.Google Scholar
  35. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.Google Scholar
  36. Sussman, M.R., Amasino, R.M., Young, J.C., Krysan, P.J. and Austin-Phillips, S. 2000. The Arabidopsis knockout facility at the University of Wisconsin-Madison. Plant Physiol. 124: 1465–1467.Google Scholar
  37. Szabados, L., Kovacs, I., Oberschall, A., Abraham, E., Kerekes, I., Zsigmond, L., Nagy, R., Alvarado, M., Krasovskaja, I., Gal, M., Berente, A., Redei, G.P., Haim, A.B. and Koncz, C. 2002. Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome. Plant J. 32: 233–242.Google Scholar
  38. Tatusova, T.A. and Madden, T.L. 1999. BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol. Lett. 174: 247–250.Google Scholar
  39. Tax, F.E. and Vernon, D.M. 2001. T-DNA-associated duplication/ translocations in Arabidopsis. Implications for mutant analysis and functional genomics. Plant Physiol. 126: 1527–1538.Google Scholar
  40. Thomas, C.M., Jones, D.A., English, J.J., Carroll, B.J., Bennetzen, J.L., Harrison, K., Burbidge, A., Bishop, G.J. and Jones, J.D. 1994. Analysis of the chromosomal distribution of transposoncarrying T-DNAs in tomato using the inverse polymerase chain reaction. Mol. Gen. Genet. 242: 573–585.Google Scholar
  41. Tinland, B., Schoumacher, F., Gloeckler, V., Bravo-Angel, A.M. and Hohn, B. 1995. The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome. EMBO J. 14: 3585–3595.Google Scholar
  42. Tinland, B. 1996. The integration of T-DNA into plant genomes. Trends Plant Sci. 1: 178–184.Google Scholar
  43. Tissier, A.F., Marillonnet, S., Klimyuk, V., Patel, K., Torres, M.A., Murphy, G. and Jones, J.D. 1999. Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11: 1841–1852.Google Scholar
  44. Valvekens, D., Van Montagu, M. and Van Lijsebettens, M. 1988. Agrobacterium tumefaciens-mediated transformation of Arabidopsis root explants using kanamycin selection. Proc. Natl. Acad. Sci. USA 85: 5536–5540.Google Scholar
  45. van der Graaff, E., den Dulk-Ras, A. and Hooykaas, P.J. 1996. Deviating T-DNA transfer from Agrobacterium tumefaciens to plants. Plant Mol. Biol. 31: 677–681.Google Scholar
  46. Wakimoto, B.T. 1998. Beyond the nucleosome: epigenetic aspects of position-effect variegation in Drosophila. Cell 93: 321–324.Google Scholar
  47. Wenck, A., Czakó, M., Kanevski, I., Márton, L. 1997. Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol. Biol. 34: 913–922.Google Scholar
  48. Zupan, J. and Zambryski, P. 1997. The Agrobacterium DNA transfer complex. Crit. Rev. Plant Sci. 16: 279–295.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Alexandra Forsbach
    • 1
  • Daniel Schubert
    • 1
  • Berthold Lechtenberg
    • 1
  • Mario Gils
    • 2
  • Renate Schmidt
    • 1
  1. 1.Coley Pharmaceutical GmbHLangenfeldGermany
  2. 2.Icon Genetics GmbH, Biozentrum HalleHalle (Saale)Germany

Personalised recommendations