Foundations of Science

, Volume 8, Issue 2, pp 109–172 | Cite as

Formalism, Ontology and Methodology in Bohmian Mechanics

  • Darrin W. Belousek

Abstract

The relationship between mathematical formalism, physical interpretation and epistemological appraisal in the practice of physical theorizing is considered in the context of Bohmian mechanics. After laying outthe formal mathematical postulates of thetheory and recovering the historical roots ofthe present debate over the meaning of Bohmianmechanics from the early debate over themeaning of Schrödinger's wave mechanics,several contemporary interpretations of Bohmianmechanics in the literature are discussed andcritiqued with respect to the aim of causalexplanation and an alternative interpretationis proposed. Throughout, the over-arching aimis to exhibit the connections betweenmathematical, ontological and methodologicalquestions in physical theory and to reflect onthe rationality of physical theorizing in lightof the present case.

explanation interpretation ontology quantum mechanics theory appraisal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Albert, D.Z.: 1996, Elementary Quantum Metaphysics. In Cushing et al., 277–284.Google Scholar
  2. Baublitz, M. and A. Shimony: 1996, Tension in Bohm's Interpretation of Quantum Mechanics. In Cushing et al., 251–264.Google Scholar
  3. Baym, G.: 1969, Lectures on Quantum Mechanics. New York: W.A. Benjamin.Google Scholar
  4. Bell, J.S.: 1987, Speakable and Unspeakable in QuantumMechanics. Cambridge: Cambridge University Press.Google Scholar
  5. Belousek, D.W.: 1996, Einstein's 1927 Unpublished Hidden-Variable Theory: Its Background, Context and Significance, Studies in History and Philosophy of Modern Physics 27: 437–461.Google Scholar
  6. Belousek, D.W.: 1998, Falsification, the Duhem-Quine Thesis, and Scientific Realism: From a Phenomenological Point of View, Journal of the British Society for Phenomenology 29: 145–161.Google Scholar
  7. Belousek, D.W.: 1999, Bell's Theorem, Nonseparability and Spacetime Individuation in Quantum Mechanics, Philosophy of Science 66: S28–S46 (Proceedings).Google Scholar
  8. Belousek, D.W.: 2000a, Statistics, Symmetry and the Conventionality of Indistinguishability in Quantum Mechanics, Foundations of Physics 30: 1–34.Google Scholar
  9. Belousek, D.W.: 2000b, Statistics, Symmetry and (In)Distinguishability in Bohmian Mechanics, Foundations of Physics 30: 153–164.Google Scholar
  10. Belousek, D.W.: 2000c, Interpretation and Ontology in Modern Physics, Metascience (November): 460–467.Google Scholar
  11. Ben-Menahem, Y.: 1990, Equivalent Descriptions, British Journal for the Philosophy of Science 41: 261–279.Google Scholar
  12. Bohm, D.: 1952, A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables, I and II, Physical Review 85: 166–193.Google Scholar
  13. Bohm, D.: 1953, Proof that Probability Density Approaches |ψ|2 in Causal Interpretation of the Quantum Theory, Physical Review 89: 458–466.Google Scholar
  14. Bohm, D. and B.J. Hiley: 1993, The Undivided Universe: An Ontological Interpretation of Quantum Theory. London: Routledge.Google Scholar
  15. Bohr, N.: 1985, CollectedWorks: Foundations of Quantum Physics I (1926–1932) (Vol. 6), in J. Kalckar (ed.). Amsterdam: North-Holland.Google Scholar
  16. Brown, H.R., A. Elby and B. Weingard: 1996, Cause and Effect in the Pilot-Wave Interpretation of Quantum Mechanics. In Cushing et al., 309–319.Google Scholar
  17. Bub, J.: 1997, Interpreting the Quantum World. Cambridge: Cambridge University Press.Google Scholar
  18. Cushing, J.T.: 1991, Quantum Theory and Explanatory Discourse: Endgame for Understanding? Philosophy of Science 58: 337–358.Google Scholar
  19. Cushing, J.T.: 1994, Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony. Chicago: University of Chicago Press.Google Scholar
  20. Cushing, J.T., A. Fine and S. Goldstein (eds.): 1996, Bohmian Mechanics and Quantum Theory: An Appraisal. Dordrecht: Kluwer.Google Scholar
  21. Cushing, J.T. and E. McMullin (eds.): 1989, Philosophical Consequences of Quantum Theory: Reflections on Bell's Theorem. Notre Dame, IN: University of Notre Dame Press.Google Scholar
  22. de Broglie, L.: 1927, La Mécanique ondulatoire et la structure atomique de la matière et du rayonment, Le Journal de Physique et Le Radium 8: 225–241. Reprinted in English translation in L. de Broglie and L. Brillouin: 1928, Selected Papers on Wave Mechanics. London: Blackie and Son, 113–138.Google Scholar
  23. de Broglie, L.: 1960, Non-LinearWaveMechanics: A Causal Interpretation, trans. by A.J. Knodel and Jack C. Miller. Amsterdam: Elsevier.Google Scholar
  24. de Broglie, L.: 1964, The Current Interpretation of Wave Mechanics: A Critical Study. Amsterdam: Elsevier.Google Scholar
  25. Dickson, M.: 1996, Antidote or Theory? Studies in History and Philosophy of Modern Physics 27: 229–238.Google Scholar
  26. Dirac, P.A.M.: 1958, The Principles of Quantum Mechanics, 4th ed. Oxford: Oxford University Press.Google Scholar
  27. Dürr, D., S. Goldstein and N. Zanghi: 1992, Quantum Equilibrium and the Origin of Absolute Uncertainty, Journal of Statistical Physics 67: 843–907.Google Scholar
  28. Dürr, D., S. Goldstein and N. Zanghi: 1995, Quantum Physics without Quantum Philosophy, Studies in History and Philosophy of Modern Physics 26: 137–149.Google Scholar
  29. Dürr, D., S. Goldstein and N. Zanghi: 1996, Bohmian Mechanics as the Foundations of Quantum Mechanics. In Cushing et al., 21–44.Google Scholar
  30. Goldstein, S.: 1987, Stochastic Mechanics and Quantum Theory, Journal of Statistical Physics 47: 645–667.Google Scholar
  31. Goldstein, S.: 1996, Review Essay: Bohmian Mechanics and The Quantum Revolution, Synthese 107: 145–165.Google Scholar
  32. Heidegger, M.: 1985, History of the Concept of Time, trans. by T. Kisiel. Bloomington, IN: Indiana University Press.Google Scholar
  33. Holland, P.R.: 1993, The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics, Cambridge: Cambridge University Press.Google Scholar
  34. Holland, P.R.: 1996, Is QuantumMechanics Universal? In Cushing et al., 99–110.Google Scholar
  35. Howard, D.: 1990, Nicht Sein Kann Was Nicht Sein Darf, or the Prehistory of EPR, 1909–1935: Einstein's Early Worries about the Quantum Mechanics of Composite Systems. In A.I. Miller (ed.), Sixty-Two Years of Uncertainty. New York: Plenum Press, 61–109.Google Scholar
  36. Klein, M.J.: 1964, Einstein and the Wave-Particle Duality, The Natural Philosopher 3: 1–49.Google Scholar
  37. Kuhn, T.S.: 1970, The Structure of Scientific Revolutions, 2nd ed. Chicago: University of Chicago Press.Google Scholar
  38. Kuhn, T.S.: 1977, Objectivity, Value Judgment, and Theory Choice. In The Essential Tension: Selected Studies in Scientific Tradition and Change. Chicago: University of Chicago Press, 320–339.Google Scholar
  39. Lakatos, I.: 1978, The Methodology of Scientific Research Programmes. Cambridge: Cambridge University Press.Google Scholar
  40. Landé, A.: 1965, New Foundations of Quantum Mechanics. London: Cambridge University Press.Google Scholar
  41. Landau, L.D. and E.M. Lifshitz: 1965, Quantum Mechanics, 2nd ed. Oxford: Pergamon Press.Google Scholar
  42. Laudan, L.: 1984, Science and Values. Berkeley: University of California.Google Scholar
  43. MacIntyre, A.: 1984, After Virtue, 2nd ed. Notre Dame, IN: University of Notre Dame Press.Google Scholar
  44. McMullin, E.: 1983, Values in Science, Proceedings of the Philosophy of Science Association 2: 3–28.Google Scholar
  45. McMullin, E.: 1984, Two Ideals of Explanation in Natural Science. In P.A. French et al. (eds.), Midwest Studies in Philosophy of Science, Vol. IX: Causation and Causal Theories. Minneapolis: University of Minnesota, 205–220.Google Scholar
  46. McMullin, E.: 1988a, Goals of Natural Science. In I. Hronzsky et al. (eds.), Scientific Knowledge Socialized. Budapest: Akadéiai Kiadó, 27–58.Google Scholar
  47. McMullin, E.: 1988b, The Shaping of Scientific Rationality: Construction and Constraint. In E. McMullin (ed.), Construction and Constraint: The Shaping of Scientific Rationality. Notre Dame, IN: University of Notre Dame, 1–47.Google Scholar
  48. McMullin, E.: 1989, The Explanation of Distant Action: Historical Notes. In Cushing and McMullin, 272–302.Google Scholar
  49. Nelson, E.: 1966, Derivation of the Schrödinger Equation from Newtonian Mechanics, Physical Review 150: 1079–1085.Google Scholar
  50. Newton-Smith, W.H.: 1981, The Ratioinality of Science. London: Routledge and Keegan Paul.Google Scholar
  51. Pais, A.: 1982, Subtle is the Lord...:The Science and Life of Albert Einstein. Oxford: Clarendon Press.Google Scholar
  52. de la Peña-Auerbach, L. and L.S. Garcia-Colín: 1968, Possible Interpretation of Quantum Mechanics, Journal of Mathematical Physics 9: 916–921.Google Scholar
  53. Quine, W.V.O.: 1975, On Empirically Equivalent Systems of The World, Erkenntnis 9: 313–328.Google Scholar
  54. Schrödinger, E.: 1926a, Quantisierung als Eigenwertproblem (Erste Mitteilung), Annalen der Physik 79: 361–376. Reprinted in English translation in Schrödinger: 1928, 1–12.Google Scholar
  55. Schrödinger, E.: 1926b, Quantisierung als Eigenwertproblem (Zweite Mitteilung), Annalen der Physik 79: 489–527. Reprinted in English translation in Schrödinger: 1928, 13–40.Google Scholar
  56. Schrödinger, E.: 1928, Collected Papers on Wave Mechanics. London: Blackie and Son.Google Scholar
  57. Shapere, D.: 1980, The Character of Scientific Change. In T. Nickles (ed.), Scientific Discovery, Logic and Rationality. Dordrecht: Reidel, 61–116.Google Scholar
  58. Shapere, D.: 1984, Objectivity, Rationality, and Scientific Change, Philosophy of Science Association 2: 637–663.Google Scholar
  59. Valentini, A.: 1991, Signal Locality, Uncertainty, and the Subquantum HTheorem, I and II, Physics Letters A 156: 5–11 and 158: 1–8.Google Scholar
  60. Valentini, A.: 1992, On the Pilot-Wave Theory of Classical, Quantum and Subquantum Physics. Ph.D. Dissertation, ISAS–International School for Advanced Studies, Trieste. To be published as On the Pilot-Wave Theory of Classical, Quantum and Subquantum Physics. Springer-Verlag, Berlin.Google Scholar
  61. Valentini, A.: 1996, Pilot-Wave Theory of Fields, Gravitation and Cosmology. In Cushing et al., 45–66.Google Scholar
  62. Valentini, A.: 1997, On Galilean and Lorentz Invariance in Pilot-Wave Dynamics, Physics Letters A 228: 215–222.Google Scholar
  63. von Neumann, J.: 1955, Mathematical Foundations of Quantum Mechanics, Princeton, NJ: Princeton University Press.Google Scholar
  64. Wessels, L.: 1977, Schrödinger's Route to Wave Mechanics, Studies in History and Philosophy of Science 10: 311–340.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Darrin W. Belousek
    • 1
  1. 1.Department of Bible, Religion and PhilosophyGoshen CollegeGoshenUSA

Personalised recommendations