Journal of Insect Behavior

, Volume 16, Issue 2, pp 279–293 | Cite as

Patch Time Allocation by the Parasitoid Diadegma semiclausum (Hymenoptera: Ichneumonidae). I. Effect of Interpatch Distance

Abstract

We observed the foraging behavior of Diadegma semiclausum (Hymenoptera:Ichneumonidae), a larval parasitoid of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), in a wind tunnel to determine how interpatch distance affects patch time allocation. Individual female wasps were released onto an experimental patch infested with host larvae and were allowed freely to leave for an identically extrapatch placed upwind of the experimental patch with varying interpatch distances. The effects of interpatch distance and within-patch foraging experience on the patch-leaving tendency of the parasitoid were analyzed bymeans of the proportional hazards model. Increasing interpatch distance andunsuccessful host encounter as a result of host defense decreased the patch-leaving tendency, while successful oviposition and unsuccessful search time since last oviposition increased the patch-leaving tendency. Asa result, both patch residence time and number of ovipositions by D. semiclausum increased with increasing interpatch distance, which appears to agree with the general predictions of the marginal value theorem that a parasitoid should stay longer and parasitize more hosts with increasing interpatch distance.

Diadegma semiclausum interpatch distance marginal value theorem patch time allocation Plutella xylostella proportional hazards model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, P. D. (1997). Survival Analysis Using the SAS System, a Practical Guide, SAS Institute, Cary, NC.Google Scholar
  2. Bonser, R., Wright, P. J., Bament, S., and Chukwu, U. O. (1998). Optimal patch use by foraging workers of Lasius fuliginosus, L. niger and Myrmica ruginodis. Ecol. Entomol. 23: 15–21.Google Scholar
  3. Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9: 129–136.Google Scholar
  4. Collett, D. (1994). Modelling Survival Data in Medical Research, Chapman and Hall, London.Google Scholar
  5. Cox, D. R. (1972). Regression models and life tables. Biometrics 38: 67–77.Google Scholar
  6. Driessen, G., and Bernstein, C. (1999). Patch departure mechanisms and optimal host exploitation in an insect parasitoid. J. Anim. Ecol. 68: 445–459.Google Scholar
  7. Driessen, G., Bernstein, C., van Alphen, J. J. M., and Kacelnik, A. (1995). A count-down mechanism for host search in the parasitoid Venturia canescens. J. Anim. Ecol. 64: 117–125.Google Scholar
  8. Geervliet, J. B. F., Ariëns, S., Dicke, M., and Vet, L. E. M. (1998). Long-distance assessment of patch profitability through volatile infochemicals by the parasitoids Cotesia glomerata and C. rubecula (Hymenoptera: Braconidae). Biol. Control 11: 113–121.Google Scholar
  9. Godfray, H. C. J. (1994). Parasitoids: Behavioural and Evolutionary Ecology, Princeton University Press, Princeton, NJ.Google Scholar
  10. Haccou, P., and Meelis, E. (1994). Statistical Analysis of Behavioural Data, Oxford University Press, New York.Google Scholar
  11. Haccou, P., De Vlas, S. J., van Alphen, J. J. M., and Visser, M. E. (1991). Information processing by foragers: effects of intra-patch experience on the leaving tendency of Leptopilina heterotoma. J. Anim. Ecol. 60: 93–106.Google Scholar
  12. Hemerik, L., Driessen, G., and Haccou, P. (1993). Effects of intra-patch experiences on patch time, search time and searching efficiency of the parasitoid Leptopilina clavipes. J. Anim. Ecol. 62: 33–44.Google Scholar
  13. Keller, M. A. (1990). Response of the parasitoid Cotesia rubecula to its hosts Pieris rapae in a flight tunnel. Entomol. Exp. Appl. 57: 245–249.Google Scholar
  14. Keller, M. A., and Tenhumberg, B. (2000). New insight into the foraging behavior of parasitic wasps. In Austin, A. D., and Dowton, M. D. (Eds.), Hymenoptera: Evolution, Biodiversity and Biological Control, CSIRO, Victoria, Australia, pp. 247–257.Google Scholar
  15. Lei, G. C., and Camard, M. (1999). Behaviour of a specialist parasitoid, Cotesia melitaearum: from individual behaviour to metapopulation processes. Ecol. Entomol. 24: 59–72.Google Scholar
  16. Nelson, J. M., and Roitberg, B. D. (1995). Flexible patch time allocation by the leafminer parasitoid, Opius dimidiatus. Ecol. Entomol. 20: 245–252.Google Scholar
  17. Noldus, L. P. J. J. (1991). The observer: A software system for collection and analysis of observational data. Behav. Res. Meth. Instrum. Comp. 23: 415–429.Google Scholar
  18. Roitberg, B. D., and Prokopy, R. J. (1982). Influence of intertree distance on foraging behaviour of Rhagoletis pomonella in the field. Ecol. Entomol. 7: 437–442.Google Scholar
  19. Rosenheim, J. A., and Mangel, M. (1994). Patch-leaving rules for parasitoids with imperfect host discrimination. Ecol. Entomol. 19: 374–380.Google Scholar
  20. Shaltiel, L., and Ayal, Y. (1998). The use of kairomones for foraging decisions by an aphid parasitoid in small host aggregations. Ecol. Entomol. 23: 319–329.Google Scholar
  21. Stephens, D. W., and Krebs, J. R. (1986). Foraging Theory, Princeton University Press, Princeton, NJ.Google Scholar
  22. Tenhumberg, B., Keller, M. A., Possingham, H. P., and Tyre, A. J. (2001). Optimal patch leaving behaviour: A case study using the parasitoid Cotesia rubecula. J. Anim. Ecol. 70: 683–691.Google Scholar
  23. van Alphen, J. J. M., and Galis, F. (1983). Patch time allocation and parasitization efficiency of Asobora tabida Nees, a larval parasitoid of Drosophila. J. Anim. Ecol. 52: 937–952.Google Scholar
  24. van Alphen, J. J. M., and Jervis, M. A. (1996). Foraging behaviour. In Jervis, M., and Kidd, N. (Eds.), Insect Natural Enemies, Practical Approaches to Their Research and Evaluation, Chapman and Hall, London, pp. 1–62.Google Scholar
  25. van Lenteren, J. C. (1991). Encounters with parasitized hosts: to leave or not to leave a patch. Netherl J. Zool. 41: 144–157.Google Scholar
  26. van Roermund, H. J. W., Hemerik, L., and van Lenteren, J. C. (1994). Influence of intrapatch experiences and temperature on the time allocation of the whitefly parasitoid Encarsia formosa (Hymenoptera: Aphelinidae). J. Insect Behav. 7: 483–501.Google Scholar
  27. van Steenis, M. J., El-Khawass, K. A. M. H., Hemerik, L., and van Lenteren, J. C. (1996). Time allocation of the parasitoid Aphidius colemani (Hymenoptera: Aphidiidae) foraging for the Aphis gossypii (Homoptera: Aphidae) on cucumber leaves. J. Insect Behav. 9: 283–295.Google Scholar
  28. Vet, L. E. M., and Dick, M. (1992). Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37: 141–172.Google Scholar
  29. Vos, M., Hemerik, L., and Vet, L. E. M. (1998). Patch exploitation by the parasitoids Cotesia rubecula and Cotesia glomerata in multi-patch environments with different host distributions. J. Anim. Ecol. 67: 774–783.Google Scholar
  30. Waage, J. K. (1978). Arrestment responses of the parasitoid, Nemeritis canescens, to contact chemicals by its hosts, Plodia interpunctella. Physiol. Entomol. 3: 135–146.Google Scholar
  31. Waage, J. K. (1979). Foraging for patchily-distributed hosts by the parasitoid, Nemeritis canescens. J. Anim. Ecol. 48: 353–371.Google Scholar
  32. Wajnberg, E., Rosi, M.C., and Colazza, S. (1999). Genetic variation in patch time allocation in a parasitic wasp. J. Anim. Ecol. 68: 121–133.Google Scholar
  33. Wajnberg, E., Fauvergue, X., and Pons, O. (2000). Patch leaving decision rules and the marginal value theorem: An experimental analysis and a simulation model. Behav. Ecol. 11: 577–586.Google Scholar
  34. Wang, X. G. (2002). Patch Exploitation by the Parasitoids of Plutella xylostella (L.): From Individual Behavior to Population Dynamics (Ph.D. thesis summary). Austral. J. Entomol. 41: 282–284.Google Scholar
  35. Wang, X. G, and Keller, M. A. (2002). A comparison of the host-searching efficiency of two larval parasitoids of Plutella xylostella. Ecol. Entomol. 27: 105–114.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Department of Applied and Molecular EcologyUniversity of Adelaide, Waite CampusGlen OsmondAustralia

Personalised recommendations