Advertisement

Brain Topography

, Volume 15, Issue 4, pp 233–238 | Cite as

Optimized Individual Mismatch Negativity Source Localization Using a Realistic Head Model and the Talairach Coordinate System

  • Kyoo Seob Ha
  • Tak Youn
  • Seog Weon Kong
  • Hae-Jeong Park
  • Tae Hyon Ha
  • Myung Sun Kim
  • Jun Soo Kwon
Article

Abstract

The purpose of this study is to evaluate the difference between anatomical locations of mismatch negativity (MMN) generators using a realistic head model and the Talairach coordinate system. This was performed by dipole source analysis by using a high density 128 channel electroencephalography (EEG) acquisition system and the subjects' individual 3D magnetic resonance images (MRI) for the realistic head model, in 24 healthy subjects. For dipole source localization, both the Talairach coordinate system and the individual MRI realistic head models were used and location results were compared. The MMN generators were clearly localized in the superior temporal gyri, especially in Heschl's gyrus, according to each individual's structural MRI. Only 37.5% of subjects showed the same anatomical locations of the MMN generator in both hemispheres in the realistic head model and in Talairach coordinate system, but fifteen subjects (62.5%) didn't. This result indicates that individually registered functional locations are desirable for the precise localization of activated areas in functional imaging studies and that a brain coordinate system is needed which adequately accounts for ethnic differences.

Mismatch negativity Dipole source localization Talairach coordinates system Realistic head model Interethnic brain difference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, H., Lutzenberger, W. and Hertrich, I. Hemispheric lateralization of the neural encoding of temporal speech features: a whole-head magnetencephalography study. Brain Res. Cogn. Brain Res., 1999, 7: 511-518.PubMedGoogle Scholar
  2. Alho, K., Connolly, J.F., Cheour, M., Lehtokoski, A., Huotilainen, M., Virtanen, J., Aulanko, R. and Ilmoniemi, R.J. Hemispheric lateralization in preattentive processing of speech sounds. Neurosci. Lett., 1998a, 258: 9-12.PubMedGoogle Scholar
  3. Alho, K., Winkler, I., Escera, C., Huotilainen, M., Virtanen, J., Jaaskelainen, I.P., Pekkonen, E. and Ilmoniemi, R.J. Processing of novel sounds and frequency changes in the human auditory cortex: magnetoencephalographic recordings. Psychophysiology, 1998b, 35: 211-224.PubMedGoogle Scholar
  4. Boon, P., D'Have, M., Vanrumste, B., Van Hoey, G., Vonck, K., Van Walleghem, P., Caemaert, J., Achten, E. and De Reuck, J. Ictal source localization in presurgical patients with refractory epilepsy. J. Clin. Neurophysiol., 2002, 19: 461-468.PubMedGoogle Scholar
  5. Buchner, H., Waberski, T.D., Fuchs, M., Wischmann, H.A., Wagner, M. and Drenckhahn, R. Comparison of realistically shaped boundary-element and spherical head models in source localization of early somatosensory evoked potentials. Brain Topogr., 1995, 8: 137-143.PubMedGoogle Scholar
  6. Cuffin, B.N. EEG dipole source localization. IEEE Eng. Med. Biol. Mag., 1998, 117: 118-122.Google Scholar
  7. Deouell, L.Y., Bentin, S. and Giard, M.H. Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators. Psychophysiology, 1998, 35: 355-365.PubMedGoogle Scholar
  8. Fox, P.T. Spatial normalization: origins, objectives, applications and alternatives. Hum.Brain Mapp., 1995, 3: 161-164.Google Scholar
  9. Fuchs, M., Drenckhahn, R., Wischmann, H.A. and Wagner, M. An improved boundary element method for realistic volume-conductor modeling. IEEE Trans. Biomed. Eng., 1998, 45: 980-997.PubMedGoogle Scholar
  10. Gevins, A. The future of electroencephalography in assessing neurocognitive functioning. Electroencephalogr. Clin. Neurophysiol., 1998, 106: 165-172.PubMedGoogle Scholar
  11. Giard, M.H., Perrin, F., Pernier, J. and Bouchet, P. Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology, 1990, 27: 627-640.PubMedGoogle Scholar
  12. Han, S., Fan, S., Chen, L. and Zhuo, Y. Modulation of brain activities by hierarchical processing: a high-density ERP study. Brain Topogr., 1999, 11: 171-183.PubMedGoogle Scholar
  13. Hari, R., Hamalainen, M., Ilmoniemi, R., Kaukoranta, E., Reinikainen, K., Salminen, J., Alho, K., Näätänen, R. and Sams, M. Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: neuromagnetic recordings in man. Neurosci. Lett., 1984, 50: 127-132.PubMedGoogle Scholar
  14. Jemel, B., Achenbach, C., Muller, B.W., Ropcke, B. and Oades, R.D. Mismatch negativity results from bilateral asymmetric dipole sources in the frontal and temporal lobes. Brain Topogr., 2002, 15: 13-27.PubMedGoogle Scholar
  15. Kaiser, J. and Lutzenberger, W. Location changes enhance hemispheric asymmetry of magnetic fields evoked by lateralized sounds in humans. Neurosci. Lett., 2001, 314: 17-20.PubMedGoogle Scholar
  16. Kasai, K., Nakagome, K., Itoh, K., Koshida, I., Hata, A., Iwanami, A., Fukuda, M., Hiramatsu, K.I. and Kato, N. Multiple generators in the auditory automatic discrimination process in humans. Neuroreport, 1999, 10: 2267-2271.PubMedGoogle Scholar
  17. Kreitschmann-Andermahr, I., Rosburg, T., Meier, T., Volz, H.P., Nowak, H. and Sauer, H. Impaired sensory processing in male patients with schizophrenia: a magnetoencephalographic study of auditory mismatch detection. Schizophr Res, 1999, 35: 121-129.PubMedGoogle Scholar
  18. Laarne, P.H., Tenhunen-Eskelinen, M.L., Hyttinen, J.K. and Eskola, H.J. Effect ofEEGelectrode density on dipole localization accuracy using two realistically shaped skull resistivity models. Brain Topogr., 2000, 12: 249-254.PubMedGoogle Scholar
  19. Lancaster, J.L., Rainey, L., Summerlin, J.L., Freitas, C.S., Fox, P.T., Evans, A.E., Toga, A.W. and Mazziotta, J.C. Automated labeling of the human brain: A preliminary report on the development and evaluation of a forward-transform method.Hum. Brain Mapp., 1997, 5: 238-242.Google Scholar
  20. Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S., Rainey, L., Kochunov, P.V., Nickerson, D., Mikiten, S.A. and Fox, P.T. Automated Talairach atlas labels for functional brain mapping. Hum. Brain Mapp., 2000, 10: 120-131.PubMedGoogle Scholar
  21. Näätänen, R. Mismatch negativity (MMN): perspectives for application. Int. J. Psychophysiol., 2000, 37: 3-10.PubMedGoogle Scholar
  22. Näätänen, R., Gaillard, A.W. and Mantysalo, S. Early selective-attention effect on evoked potential reinterpreted. Acta. Psychol. (Amst.), 1978, 42: 313-329.Google Scholar
  23. Näätänen, R., and Michie, P.T. Early selective-attention effects on the evoked potential: a critical review and reinterpretation. Biol. Psychol., 1979, 8: 81-136.PubMedGoogle Scholar
  24. Park, H.J., Kwon, J.S., Youn, T., Pae, J.S., Kim, J.J., Kim, M.S. and Ha, K.S. Statistical parametric mapping of LORETA using high density EEG and individual MRI: application to mismatch negativities in schizophrenia. Hum. Brain Mapp., 2002, 17: 168-178.PubMedGoogle Scholar
  25. Rinne, T., Alho, K., Ilmoniemi, R.J., Virtanen, J. and Näätänen, R. Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage, 2000, 12: 14-19.PubMedGoogle Scholar
  26. Scherg, M., Picton, T.W. and Vajsar, J. A source analysis of the human auditory evoked potentials. J. Cogn. Neurosci., 1989, 1: 336-355.Google Scholar
  27. Scherg, M. and Von Cramon, D.Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. Electroencephalogr. Clin. Neurophysiol., 1985, 62: 32-44.PubMedGoogle Scholar
  28. Talairach, J. and Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain. Verlag; Stuttgart: Thieme, 1988.Google Scholar
  29. Waberski, T.D., Buchner, H., Lehnertz, K., Hufnagel, A., Fuchs, M., Beckmann, R. and Rienacker, A. Properties of advanced head modelling and source reconstruction for the localization of epileptiform activity. Brain Topogr., 1998, 10: 283-290.PubMedGoogle Scholar
  30. Waberski, T.D., Kreitschmann-Andermahr, I., Kawohl, W., Darvas, F., Ryang, Y., Gobbele, R. and Buchner, H. Spatio-temporal source imaging reveals subcomponents of the human auditory mismatch negativity in the cingulum and right inferior temporal gyrus. Neurosci. Lett., 2001, 308: 107-110.PubMedGoogle Scholar
  31. Youn, T., Park, H.J., Kim, J.J., Kim, M.S. and Kwon, J.S. Altered hemispheric asymmetry and positive symptoms in schizophrenia: equivalent current dipole of auditory mismatch negativity. Schizophr. Res., 2003, 59: 253-260.PubMedGoogle Scholar
  32. Zilles, K., Kawashima, R., Dabringhaus, A., Fukuda, H. and Schormann, T. Hemispheric shape of European and Japanese brains: 3-D MRI analysis of intersubject variability, ethnical, and gender differences. Neuroimage, 2001, 13: 262-271.PubMedGoogle Scholar

Copyright information

© Human Sciences Press, Inc. 2003

Authors and Affiliations

  • Kyoo Seob Ha
    • 1
  • Tak Youn
    • 1
  • Seog Weon Kong
    • 1
  • Hae-Jeong Park
    • 2
  • Tae Hyon Ha
    • 3
    • 2
  • Myung Sun Kim
    • 2
  • Jun Soo Kwon
    • 3
    • 2
  1. 1.Department of Psychiatry,Seoul National University College of Medicine,Seoul,South Korea
  2. 2.BK 21 Human Life Sciences,Seoul National University College of Medicine,Seoul,South Korea
  3. 3.Department of Psychiatry,Seoul National University College of Medicine,Seoul,South Korea

Personalised recommendations