Climatic Change

, Volume 58, Issue 3, pp 267–331 | Cite as

Metrics of Climate Change: Assessing Radiative Forcing and Emission Indices

  • Jan S. Fuglestvedt
  • Terje K. Berntsen
  • Odd Godal
  • Robert Sausen
  • Keith P. Shine
  • Tora Skodvin


In this paper, we review existing and alternative metrics of climate change, with particular emphasis on radiative forcing and global warming potentials (GWPs), in terms of their scientific performance. Radiative forcing is assessed in terms of questions such as the utility of the concept, uncertainties and sensitivity to key assumptions. The assessment of emission indices focuses on the climate and other resulting impacts (end points) against which emissions are weighted; the extent to which (and how) time dependence is included, with regard to both emission control and impact; how cost issues are dealt with; and the sensitivity of the metrics to various assumptions. It is concluded that the radiative forcing concept is a robust and useful metric of the potential climatic impact of various agents and that there are prospects for improvement by weighing different forcings according to their effectiveness. We also find that although the GWP concept is associated with serious shortcomings, it retains advantages over any of the proposed alternatives in terms of political feasibility. Alternative metrics, however, make a significant contribution to addressing important issues, and this contribution should be taken into account in the further development of refined metrics of climate change.


Climate Change Time Dependence Global Warming Significant Contribution Global Warming Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaheim, H. A.: 1999, ‘Climate Policy with Multiple Sources and Sinks of Greenhouse Gases’, Environ. Resour. Econ. 14, 413–429.Google Scholar
  2. Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan, V., and Welton, E. J.: 2000, ‘Reduction of Tropical Cloudiness by Soot’, Science 288, 1042–1047.Google Scholar
  3. Bekki, S., Law, K. S., and Pyle, J. A.: 1994, ‘Effects of Ozone Depletion on Atmospheric CH4 and CO Concentrations’, Nature 371, 595–597.Google Scholar
  4. Boucher, O., Schwartz, S. E., Ackerman, T. P., Anderson, T. L., Bergstrom, B., Bonnel, B., Chylek, P., Dahlback, A., Fouquart, Y., Fu, Q., Halthore, R. N., Haywood, J. M., Iversen, T., Kato, S., Kinne, S., Kirkevag, A., Knapp, K. R., Lacis, A., Laszlo, I., Mishchenko, M. I., Nemesure, S., Ramaswamy, V., Roberts, D. L., Russell, P., Schlesinger, M. E., Stephens, G. L., Wagener, R., Wang, M., Wong, J., and Yang, F.: 1998, ‘Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols’, J. Geophys. Res. 103, 16979–16998.Google Scholar
  5. Brühl, C.: 1993, ‘The Impact of the Future Scenarios for Methane and Other Chemically Active Gases on the GWP of Methane’, Chemosphere 26, 731–738.Google Scholar
  6. Caldeira, K. and Kasting, J. F.: 1993, ‘Insensitivity of Global Warming Potentials to Carbon Dioxide Emission Scenarios’, Nature 366, 251–253.Google Scholar
  7. Christiansen, B.: 1999, ‘Radiative Forcing and Climate Sensitivity: The Ozone Experience’, Quart. J. Roy. Meteorol. Soc. 125, 3011–3035.Google Scholar
  8. Collins, W. J., Derwent, R. G., Johnson, C. E., and Stevenson, D. S.: 2002, ‘The Oxidation of Organic Compounds in the Troposphere and their Global Warming Potentials’, Clim. Change 52, 453–479.Google Scholar
  9. Cox, S. J., Wang, W. C., and Schwartz, S. E.: 1995, ‘Climate Response to Radiative Forcings by Sulfate Aerosols and Greenhouse Gases’, Geophys. Res. Lett. 22, 2509–2512.Google Scholar
  10. Daniel, J. and Solomon, S.: 1998, ‘On the Climate Forcing by Carbon Monoxide’, J. Geophys. Res. 103, 13249–13260.Google Scholar
  11. Daniel, J. S., Solomon, S., and Albritton, D.: 1995, ‘On the Evaluation of Halocarbon Radiative Forcing and Global Warming Potentials’, J. Geophys. Res. 100, 1271–1285.Google Scholar
  12. Derwent, R. G.: 1990, ‘Trace Gases and their Relative Contribution to the Greenhouse Effect’, AERE R 13716.Google Scholar
  13. Derwent, R. G., Collins, W. J., Johnson, C. E., and Stevenson, D. S.: 2001, ‘Transient Behaviour of Tropospheric Ozone Precursors in a Global 3-D CTM and their Indirect Greenhouse Effects’, Clim. Change 25, 1–25.Google Scholar
  14. Eckaus, R. S., 1992: ‘Comparing the Effects of Greenhouse Gas Emissions on Global Warming’, Energy J. 13, 25–35.Google Scholar
  15. Ellingson, R. G., Ellis, J., and Fels, S.: 1991, ‘The Intercomparison of Radiation Codes Used in Climate Models-Long-Wave Results’, J. Geophys. Res. 96, 8929–8953.Google Scholar
  16. Fankhauser, S.: 1994, ‘The Social Costs of Greenhouse Gas Emissions: An Expected Value Approach’, Energy J. 15, 157–184.Google Scholar
  17. Fisher, D. A., Hales, C. H., Wang, W.-C., Ko, M. K. W., and Sze, N. D.: 1990, ‘Model Calculation on the Relative Effects of CFCs and their Replacements on GlobalWarming’, Nature 344, 513–516.Google Scholar
  18. Forster, P. M., Blackburn, M., Glover, R., and Shine, K. P.: 2000, ‘An Examination of Climate Sensitivity for Idealised Climate Change Experiments in an Intermediate General Circulation Model’, Clim. Dyn. 16, 833–849.Google Scholar
  19. Forster, P. M. D. and Shine, K. P.: 1999, ‘Stratospheric Water Vapour Changes as a Possible Contributor to Observed Stratospheric Cooling’, Geophys. Res. Lett. 26, 3309–3312.Google Scholar
  20. Forster, P. M. D. and Shine, K. P.: 2002, ‘Assessing the Climate Impact of Trends in Stratospheric Water Vapor’, Geophys. Res. Lett. 10.1029/2001GL013909.Google Scholar
  21. Forster, P. M. D., Freckleton, R. S., and Shine, K. P.: 1997, ‘On Aspects of the Concept of Radiative Forcing’, Clim. Dyn. 13, 547–560.Google Scholar
  22. Freckleton, R. S., Highwood, E. J., Shine, K. P., Wild, O., Law, K. S., and Sanderson, M. G.: 1998, ‘Greenhouse Gas Radiative Forcing: Effects of Averaging and Inhomogeneities in Trace Gas Distribution’, Quart. J. Roy. Meteorol. Soc. 124, 2099–2127.Google Scholar
  23. Fuglestvedt, J. S. and Berntsen, T. K.: 1999, A Simple Model for Scenario Studies of Changes in Global Climate: Version 1.0, Working Paper 1999-02, CICERO, Oslo, Norway.Google Scholar
  24. Fuglestvedt, J. S., Berntsen, T. K., Godal, O., and Skodvin, T.: 2000, ‘Climate Implications of GWPbased Reductions in Greenhouse Gas Emissions’, Geophys. Res. Lett. 27, 409–412.Google Scholar
  25. Fuglestvedt, J. S., Berntsen, T. K., Isaksen, I. S. A., Mao, H., Liang, X.-Z., and Wang, W.-C.: 1999, ‘Climatic Effects of NOx Emissions through Changes in Tropospheric O3 and CH4-A Global 3-D Model Study’, Atmos. Environ. 33, 961–977.Google Scholar
  26. Fuglestvedt, J. S., Isaksen, I. S. A., and Wang, W-C.: 1996, ‘Estimates of Indirect Global Warming Potential for CH4, CO and NOx’, Clim. Change 34, 404–437.Google Scholar
  27. Fuglestvedt, J. S., Jonson, J. E., and Isaksen, I. S. A.: 1994, ‘Effects of Reductions in Stratospheric Ozone on Tropospheric Chemistry through Changes in the Photolysis Rates’, Tellus 46B, 172–192.Google Scholar
  28. Fuglestvedt, J. S., Jonson, J. E., Wang, W.-C., and Isaksen, I. S. A.: 1995, ‘Responses in Tropospheric Chemistry to Changes in UV Fluxes, Temperatures andWater Vapour Densities’, inWang, W.-C. and Isaksen, I. S. A. (eds.), Atmospheric Ozone as a Climate Gas, NATO-ASI Series, Springer Verlag, Berlin, Germany.Google Scholar
  29. Godal, O. and Fuglestvedt, J. S.: 2002, ‘Testing 100-year Global Warming Potentials: Impacts on Compliance Costs and Abatement Profile’, Clim. Change 52, 93–127.Google Scholar
  30. Godal, O.: 2003, ‘The IPCC's Assessment of Multidisciplinary Issues: The Case of Greenhouse Gas Indices’, Editorial Essay, Clim. Change 58, 243–249.Google Scholar
  31. Hammitt, J. K.: 1999, ‘Evaluation Endpoints and Climate Policy: Atmospheric Stabilization, Benefit-Cost Analysis, and Near-Term Greenhouse-Gas Emissions’, Clim. Change 41, 447–468.Google Scholar
  32. Hammitt, J. K., Jain, A. K., Adams, J. L., and Wuebbles, D. J.: 1996, ‘A Welfare-based Index for Assessing Environmental Effects of Greenhouse-gas Emissions’, Nature 381, 301–303.Google Scholar
  33. Hammond, A. L., Rodenburg, E., and Moomaw, W.: 1990, Commentary in Nature 347, 705–706.Google Scholar
  34. Hansen, J., Fung, I., Lacis, A., Rind, D., Lebedeff, S., Ruedy, R., Russell, G., and Stone, P.: 1988, ‘Global Climate Changes as Forecast by Goddard Institute for Space Studies 3-Dimensional Model’, J. Geophys. Res. 93, 9341–9364.Google Scholar
  35. Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., and Russell, G.: 1981, ‘Climate Impact of Increasing Atmospheric Carbon-Dioxide’, Science 213, 957–966.Google Scholar
  36. Hansen, J., Sato, M., and Ruedy, R.: 1997, ‘Radiative Forcing and Climate Response’, J. Geophys. Res. 102, 6831–6864.Google Scholar
  37. Hansen, J., Sato, M., Ruedy, R., Lacis, A., and Oinas, V.: 2000, ‘Global Warming in the Twenty-first Century: An Alternative Scenario’, Proceedings of the National Academy of Sciences of the United States of America 97, 9875–9880.Google Scholar
  38. Harvey, L. D. D.: 2000, Global Warming-the Hard Science, Prentice Hall.Google Scholar
  39. Harvey, L. D. D.: 1993, ‘A Guide to Global Warming Potentials (GWPs)’, Energy Pol. 21, 24–34.Google Scholar
  40. Hauglustaine, D. A., Granier, C., and Brasseur, G. P.: 1994, ‘Impact of Increased Methane Emissions on the Atmospheric Composition and Related Radiative Forcing on the Climate System’, Non-CO2 Greenhouse Gases, 253–259.Google Scholar
  41. Haywood, J. and Boucher, O.: 2000, ‘Estimates of the Direct and Indirect Radiative Forcing Due to Tropospheric Aerosols: A Review’, Rev. Geophys. 38, 513–543.Google Scholar
  42. Hoel, M. and Isaksen, I. S. A.: 1994, ‘Efficient Abatement of Different Greenhouse Gases’, in Climate Change and the Agenda for Research, Westview Press, pp. 147–159.Google Scholar
  43. Hoel, M. and Isaksen, I. S. A.: 1995, ‘The Environmental Costs of Greenhouse Gas Emissions’, in Carraro, C. and Filar, J. A. (eds.), Control and Game-theoretical Models of the Environment (Annals of the International Society of Dynamic Games, Volume 2, pp. 89–105), Birkhauser, Boston, U.S.A.Google Scholar
  44. Intergovernmental Panel on Climate Change (IPCC): 1990, Climate Change. The Scientific Assessment, UNEP/WMO, Cambridge, Cambridge University Press.Google Scholar
  45. Intergovernmental Panel on Climate Change (IPCC): 1992, Climate Change. The Supplementary Report to the IPCC Scientific Assessment, Cambridge, Cambridge University Press, Cambridge, U.K.Google Scholar
  46. Intergovernmental Panel on Climate Change (IPCC): 1995, Climate Change 1994. Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, Cambridge, Cambridge University Press, Cambridge, U.K.Google Scholar
  47. Intergovernmental Panel on Climate Change (IPCC): 1996, Climate Change 1995. The Science of Climate Change, Cambridge University Press, Cambridge, U.K.Google Scholar
  48. Intergovernmental Panel on Climate Change (IPCC): 1999, in Penner, J. E. et al. (eds.), Aviation and the Global Atmosphere-A Special Report of IPCC Working Groups I and III, Cambridge University Press, Cambridge, U.K.Google Scholar
  49. Intergovernmental Panel on Climate Change (IPCC): 2001, in Houghton, J. T. et al. (eds.), Climate Change 2001-The Scientific Basis, Cambridge University Press, Cambridge, U.K.Google Scholar
  50. Isaksen, I. S. A., Ramaswamy, V., Rodhe, H., and Wigley, T. M. L.: 1992, ‘Radiative Forcing of Climate Change’, in Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge, pp. 47–68.Google Scholar
  51. Jain, A. K., Briegleb, B. P., Minschwaner, K., and Wuebbles, D. J.: 2000, ‘Radiative Forcings and Global Warming Potentials of 39 Greenhouse Gases’, J. Geophys. Res. 105, 20773–20790.Google Scholar
  52. Johnson, C. E. and Derwent, R. G.: 1996, ‘Relative Radiative Forcing Consequences of Global Emissions of Hydrocarbons, Carbon Monoxide and NOx from Human Activities Estimated with Zonally-averaged Two-dimensional Model’, Clim. Change 34, 439–462.Google Scholar
  53. Joos, F., Bruno, M., Fink, R., Stocker, T. F., Siegenthaler, U., Le Quéré, C., and Sarmiento, J. L.: 1996, ‘An Efficient and Accurate Representation of Complex Oceanic and Biospheric Models of Anthropogenic Carbon Uptake’, Tellus 48B, 397–417.Google Scholar
  54. Joshi, M., Shine, K., Ponater, M., Stuber, N., Sausen, R., and Li, L.: 2003, ‘A Comparison of Climate Response to Different Radiative Forcings in Three General Circulation Models: Towards an Improved Metric of Climate Change’, Clim. Dyn., to appear.Google Scholar
  55. Kandlikar, M.: 1995, ‘The Relative Role of Trace Gas Emissions in Greenhouse Abatement Policies’, Energy Pol. 23, 879–883.Google Scholar
  56. Kandlikar, M.: 1996, ‘Greenhouse Gas Indices, Degrees of Change’, in Global Change Integrated Assessment Program 1, U.S.A.Google Scholar
  57. Kandlikar, M.: 1996, ‘Indices for Comparing Greenhouse Gas Emissions: Integrating Science and Economics’, Energy Econom. 18, 265–281.Google Scholar
  58. Lacis, A. A., Wuebbles, D. J., and Logan, J. A.: 1990, ‘Radiative Forcing of Climate by Changes in the Vertical Distribution of Ozone’, J. Geophys. Res. 95, 9971–9981.Google Scholar
  59. Lashof, D. A. and Ahuja, D. R.: 1990, ‘Relative Contributions of Greenhouse Gas Emissions to Global Warming’, Nature 344, 529–531.Google Scholar
  60. Lashof, D. A.: 2000, ‘The Use of Global Warming Potentials in the Kyoto Protocol’, Clim. Change 44, 423–425.Google Scholar
  61. Lelieveld, J., Crutzen, P. J., and Dentener, F. J.: 1998, ‘Changing Concentration, Lifetime and Climate Forcing of Atmospheric Methane’, Tellus 50B, 128–150.Google Scholar
  62. Lelieveld, J. and Crutzen, P. J.: 1992, ‘Indirect Chemical Effects of Methane on Climate Warming’, Nature 355, 339–342.Google Scholar
  63. Lelieveld, J., Crutzen, P. J., and Brühl, C.: 1993, ‘Climate Effects of Atmospheric Methane’, Chemosphere 26, 739–768.Google Scholar
  64. Maier-Reimer, E. and Hasselmann, K.: 1987, ‘Transport and Storage of CO2 in the Ocean-an Inorganic Ocean-circulation Carbon Cycle Model’, Clim. Dyn. 2, 63–90.Google Scholar
  65. Manne, A. S. and Richels, R. G.: 2001, ‘An Alterative Approach to Establishing Trade-offs among Greenhouse Gases’, Nature 5, 675–677.Google Scholar
  66. Michaelis, P.: 1992, ‘GlobalWarming: Efficient Policies in the Case of Multiple Pollutants’, Environ. Resour. Econ. 2, 61–77.Google Scholar
  67. Michaelis, P.: 1999, ‘Sustainable Greenhouse Policies: The Role of Non-CO2 Gases’, Struct. Change Econom. Dyn. 10, 239–260.Google Scholar
  68. Morgenstern, R. D.: 1991, ‘Towards a Comprehensive Approach to Global Climate Change Mitigation’, in Oaxaca, R. L. and St. John, W. (eds.), The American Economic Review, Papers and Proceedings of the Hundred and Third Annual Meeting of the American Economic Association 81, Washington D. C., Dec. 28-30 1990, pp. 140–145.Google Scholar
  69. Myhre, G. and Stordal, F.: 1997, ‘Role of Spatial and Temporal Variations in the Computation of Radiative Forcing and GWP’, J. Geophys. Res. 102, 11181–11200.Google Scholar
  70. O'Neill, B. C.: 2000, ‘The Jury is Still Out on Global Warming Potentials’, Clim. Change 44, 427–443.Google Scholar
  71. Pinnock, S., Hurley, M. D., Shine, K. P., Wallington, T. J., and Smyth, T. J.: 1995, ‘Radiative Forcing of Climate by Hydrochlorofluorocarbons and Hydrofluorocarbons’, J. Geophys. Res. 100, 23227–23238.Google Scholar
  72. Prather, M. and Sausen, R.: 1999, ‘Potential Climate Change from Aviation, in Aviation and the Global Atmosphere’, in Penner, J. E. et al. (eds.), A Special Report of IPCC Working Groups I and III, Cambridge University Press, Cambridge, U.K.Google Scholar
  73. Ramanathan, V.: 1981, ‘The Role of Ocean-Atmosphere Interactions in the CO2 Climate Problem’, J. Atmos. Sci. 38, 918–930.Google Scholar
  74. Ramanathan, V., Callis, L., Cess, R., Hansen, J., Isaksen, I., Kuhn, W., Lacis, A., Luther, F., Mahlman, J., Reck, R., and Schlesinger, M.: 1987, ‘Climate-Chemical Interactions and Effects of Changing Atmospheric Trace Gases’, Rev. Geophys. 25, 1441–1482.Google Scholar
  75. Ramaswamy, V. and Chen, C. T.: 1997, ‘Climate Forcing-response Relationships for Greenhouse and Shortwave Radiative Perturbations’, Geophys. Res. Lett. 24, 667–670.Google Scholar
  76. Reilly, J. M. et al.: 1999, ‘Multi-Gas Assessment of the Kyoto Protocol’, Nature 401, 549–555.Google Scholar
  77. Reilly, J. M. and Richards, K. R.: 1993, ‘Climate Change Damage and the Trace Gas Index Issue’, Environ. Resour. Econ. 3, 41–61.Google Scholar
  78. Rodhe, H.: 1990, ‘A Comparison of the Contribution of Various Gasses to the Greenhouse Effect’, Science 248, 1217–1219.Google Scholar
  79. Rogers, J. D. and Stephens, R. D.: 1988, ‘Absolute Infrared Intensities for F-113 and F-114 and an Assessment of their Greenhouse Warming Potential Relative to Other Chlorofluorcarbons’, J. Geophys. Res. 93, 2423–2428.Google Scholar
  80. Rotmans, J. and Den Elzen, M. G. J.: 1992, ‘A Model-Based Approach to the Calculation of Global Warming Potentials (GWP)’, Int. J. Climatol. 12, 865–874.Google Scholar
  81. Rotstayn, L. D. and Penner, J. E.: 2001, ‘Indirect Aerosol Forcing, Quasi-forcing and Climate Response’, J. Climate 14, 2960–2975.Google Scholar
  82. Schlesinger, M. E., Jiang, X., and Charlson, R. J.: 1992, ‘Implications of Anthropogenic Atmospheric Sulphate for the Sensitivity of the Climate System’, Clim. Change Energy Pol., American Institute of Physics, New York.Google Scholar
  83. Schmalensee, R.: 1993, ‘Comparing Greenhouse Gases for Policy Purposes’, Energy J. 14, 245–255.Google Scholar
  84. Schneider, S. H.: 1975, ‘On the Carbon-dioxide Climate Confusion’, J. Atmos. Sci. 32, 2060–2066.Google Scholar
  85. Shackley, S. and Wynne, B.: 1997, ‘Global Warming Potentials: Ambiguity or Precision as an Aid to Policy?’, Clim. Res. 8, 89–106.Google Scholar
  86. Shine, K. P.: 2000, ‘Radiative Forcing of Climate Change’, Space Sci. Rev. 94, 363–373.Google Scholar
  87. Shine, K. P. and Forster, P. M. D.: 1999, ‘The Effect of Human Activity on Radiative Forcing of Climate Change: A Review of Recent Developments’, Global Planet. Change 20, 205–225.Google Scholar
  88. Shine, K. P., Briegleb, B. P., Grossman, A. S., Hauglustaine, D., Mao, H., Ramaswamy, V., Schwarzkopf, M. D., Van Dorland, R., and Wang, W.-C.: 1995, ‘Radiative Forcing Due to Changes in Ozone: A Comparison of Different Codes’, in Wang, W.-C. and Isaksen, I. S. A. (eds.), Atmospheric Ozone as a Climate Gas, NATO ASI Series, Springer-Verlag, Berlin, pp. 373–395.Google Scholar
  89. Siegenthaler, I. and Oeschger, H.: 1987, ‘Biospheric CO2 Emissions during the Past 200 Years Reconstructed by Deconvolution of Ice Core Data’, Tellus 39B, 140–154.Google Scholar
  90. Siegenthaler, U.: 1983, ‘Uptake of Excess CO2 by an Outcrop-diffusion Model of the Ocean’, J. Geophys. Res. 88, 3599–3608.Google Scholar
  91. Sihra, K., Hurley, M. D., Shine, K. P., and Wallington, T. J.: 2001, ‘Updated Radiative Forcing Estimates of Sixty-five Halocarbons and Non-methane Hydrocarbons’, J. Geophys. Res. 106, 20493–20506.Google Scholar
  92. Skodvin, T.: 1999, Making Climate Change Negotiable: The Development of the Global Warming Potential Index, CICEROWorking Paper, 9.Google Scholar
  93. Skodvin, T. and Fuglestvedt, J. S.: 1997, ‘A Comprehensive Approach to Climate Change: Political and Scientific Considerations’, Ambio 26, 351–358.Google Scholar
  94. Smith, S. J. and Wigley, T. M. L.: 2000b, ‘Global Warming Potentials: 2. Accuracy’, Clim. Change 44, 459–469.Google Scholar
  95. Smith, S. J. and Wigley, T. M. L.: 2000a, ‘Global Warming Potentials: 1. Climatic Implications of Emissions Reductions’, Clim. Change 44, 445–457.Google Scholar
  96. Stuber, N., Ponater, M., and Sausen, R.: 2001b, ‘Enhanced Climate Sensitivity Due to Stratospheric Water Vapor Feedback’, Geophys. Res. Lett. 28, 2887–2890.Google Scholar
  97. Stuber, N., Sausen, R., and Ponater, M.: 2001a, ‘Stratosphere Adjusted Radiative Forcing Calculations in a Comprehensive Climate Model’, Theor. Appl. Climatol. 68, 125–135.Google Scholar
  98. Sygna, L., Fuglestvedt, J. S., and Aaheim, H. Aa.: 2002, ‘The Adequacy of GWPs as Indicators of Damage Costs Incurred by Global Warming’, Mitigation Adaption Strategies Global Change 7, 45–62.Google Scholar
  99. Tol, R. S. J.: 1999, ‘The Marginal Costs of Greenhouse Gas Emissions’, Energy J. 20, 61–81.Google Scholar
  100. Victor, D.: 1990, Methodologies for Calculating GWPs, Report from Workshop on the Scientific Basis of Global Warming Potential Indices, University of Colorado.Google Scholar
  101. Wallis, M. K. and Lucas, N. J. D.: 1994, ‘Economic Global Warming Potentials’, Int. J. Energy Res. 18, 57–62.Google Scholar
  102. Wang, W.-C., Pinto, J. P., and Yung, Y. L.: 1980, ‘Climatic Effects Due to Halogenated Compounds in the Earth's Atmosphere’, J. Atmos. Sci. 37, 247–256.Google Scholar
  103. Wigley, T. M. L.: 1998, ‘The Kyoto Protocol: CO2, CH4 and Climate Implications’, Geophys. Res. Lett. 25, 2585–2288.Google Scholar
  104. Wigley, T. M. L. and Reeves, C.: 1991, Global Warming Potentials, A Report to the U.K. Department of the Environment, London.Google Scholar
  105. Wild, O., Prather, M. J., and Akimoto, H.: 2001, ‘Indirect Long-term Global Radiative Cooling from NOx Emissions’, Geophys. Res. Lett. 28, 1719.Google Scholar
  106. WMO: 1992, Scientific Assessment of Ozone Depletion, 1991. Global Ozone Research and Monitoring Project Report No. 37, World Meteorological Organization (WMO), Geneva.Google Scholar
  107. WMO: 1999, Scientific Assessment of Ozone Depletion, 1998, Global Ozone Research and Monitoring Project Report No. 44, World Meteorological Organisation, Geneva.Google Scholar
  108. Wuebbles, D. J.: 1981, The Relative Efficiency of a Number of Halocarbons for Destroying Stratospheric Ozone, UCID-18924, Lawrence Livermore National Laboratory, Livermore.Google Scholar
  109. Wuebbles, D. J., Jain, A. K., Patten, K. O., and Grant, K. E.: 1995, ‘Sensitivity of Direct Global Warming Potentials to Key Uncertainties’, Clim. Change 29, 265–297.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jan S. Fuglestvedt
    • 1
  • Terje K. Berntsen
    • 1
  • Odd Godal
    • 1
    • 2
  • Robert Sausen
    • 3
  • Keith P. Shine
    • 4
  • Tora Skodvin
    • 1
    • 5
  1. 1.CICERO – Center for International Climate and Environmental Research – OsloOsloNorway
  2. 2.Department of EconomicsUniversity of BergenNorway
  3. 3.DLR-Institut für Physik der AtmosphäreOberpfaffenhofen, WesslingGermany
  4. 4.Department of MeteorologyUniversity of ReadingReadingU.K
  5. 5.Department of Political ScienceUniversity of OsloNorway

Personalised recommendations