Advertisement

High-temperature strength of bulk single crystals of III-V nitrides

  • I. Yonenaga
Article

Abstract

A Vickers indentation method was used to determine the hardness of AlN and GaN, grown by the hydride vapor phase epitaxy technique, in the temperature range 20–1400 °C. At room temperature, the hardnesses of GaN and AlN are 10.2 and 17.7 GPa, respectively. The hardness of GaN and AlN shows a gradual decrease from RT and then a steep decrease from around 1000 °C. AlN is harder than GaN but softer than SiC. The steep decrease of the hardness means the beginning of macroscopic dislocation motion and plastic deformation. The mechanical strength of bulk single-crystal GaN is investigated at elevated temperatures directly by means of compressive deformation. The yield stress of GaN in the temperature range 900–1000 °C is around 100–200 MPa, i.e., similar to that of 6H-SiC and much higher than those of Si, Ge, GaAs.

Keywords

GaAs Nitrides Hydride Vapor Phase Dislocation Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Usui, H. Sunakawa, A. Sakai and A. A. Yamaguchi, Jpn. J. Appl Phys. 36 (1997) L899.Google Scholar
  2. 2.
    A. Nikolaev, I. Nikitina, A. Zubrilov, M. Mynbaeva, Y. Melnik and V. Dmitriev, Mater. Res. Soc. Symp. Proc. 595 (2000) W6.5.1.Google Scholar
  3. 3.
    I. Yonenaga, T. Hoshi and A. Usui, Jpn. J. Appl. Phys. 39 (2000) L200.Google Scholar
  4. 4.
    I. Yonenaga, T. Hoshi and A. Usui, J. Phys. Condens. Matter. 12 (2000) 10319.Google Scholar
  5. 5.
    I. Yonenaga, A. Nikolaev, Y. Melnik and V. Dmitriev, Jpn. J. Appl. Phys. 40 (2001) L426.Google Scholar
  6. 6.
    I. J. Mccolm, “Ceramic Hardness” (Plenum, New York, 1990).Google Scholar
  7. 7.
    R. J. Jaccodine, J. Electrochem. Soc. 110 (1963) 524.Google Scholar
  8. 8.
    K. Hayashi, M. Ashizuka, R. C. Bradt and H. Hirano, Mater. Lett. 1 (1982) 116.Google Scholar
  9. 9.
    G. Michot, A. George, A. Chabli-Brenac and E. Molva, Scr. Metall. 22 (1988) 1043.Google Scholar
  10. 10.
    K. Yasutake, Y. Konishi, K. Adachi, K. Yoshi, M. Umeno and H. Kawabe, Jpn. J. Appl. Phys. 27 (1988) 2238.Google Scholar
  11. 11.
    B. Ya. Farber, S. Y. Yoon, K. P. D. LagerlÖf and A. H. Heuer, Phys. Status Solidi A 137 (1993) 485.Google Scholar
  12. 12.
    J. C. Phillips, “Bonds & Bands in Semiconductors” (Academic Press, New York, 1973).Google Scholar
  13. 13.
    I. Yonenaga, Physica B 308–310 (2001) 1150.Google Scholar
  14. 14.
    K. Motoki, T. Okahisa, N. Matsumoto, M. Matsushima, H. Kimura, H. Kasa, K. Takemoto, K. Uematsu, T. Hirano, M. Nakayama, S. Nakahata, M. Ueno, D. Hara, Y. Kumagai, A. Koukitu and H. Seki, Jpn. J. Appl. Phys. 40 (2001) L140.Google Scholar
  15. 15.
    I. Yonenaga and K. Motoki, J. Appl. Phys. 90 (2001) 6539.Google Scholar
  16. 16.
    A. V. Sammnt, W. L. Zhou and P. Pirouz, Phys. Status Solidi. A 166 (1998) 155.Google Scholar
  17. 17.
    I. Yonenaga, J. Electrochem. Soc. 143 (1996) L176.Google Scholar
  18. 18.
    I. Yonenaga, J. Mater. Sci.: Mater. Electron. 10 (1999) 329.Google Scholar
  19. 19.
    I. Yonenaga and K. Sumino, Phys. Status Solidi. A 131 (1992) 663.Google Scholar
  20. 20.
    S. Fujita, K. Maeda and S. Hyodo, Philos. Mag. A 55 (1987) 203.Google Scholar
  21. 21.
    I. Yonenaga, J. Phys. III France 7 (1997) 1435.Google Scholar
  22. 22.
    I. Yonenaga, J. Appl. Phys. 84 (1998) 4209.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • I. Yonenaga
    • 1
  1. 1.Institute for Materials Research, Tohoku UniversitySendaiJapan

Personalised recommendations