Journal of Chemical Ecology

, Volume 29, Issue 5, pp 1253–1268

Attractiveness of Fruit and Flower Odorants Detected by Olfactory Receptor Neurons in the Fruit Chafer Pachnoda marginata

  • Mattias C. Larsson
  • Marcus C. Stensmyr
  • Shannon B. Bice
  • Bill S. Hansson

Abstract

We studied the attraction of the African fruit chafer Pachnodamarginata Drury (Coleoptera: Scarabaeidae) to banana and 34 synthetic plant compounds previously shown to be detected by P. marginata olfactory receptor neurons. The behavioral studies were carried out in a two-choice olfactometer, where the attraction of beetles to lures and controls was monitored in 30-min intervals during whole days. Monitoring of the attraction over time gave additional information when comparing relative attractiveness of different compounds. Seventeen of the test compounds, primarily phenylic compounds, fruit esters, isovaleric acid, acetoin, and some floral or fruit terpenes, were attractive to P. marginata. Compounds showing no attractiveness included green leaf volatiles, lactones, and several alcohols, but also phenylic compounds and esters. One case of blend synergism was demonstrated, as well as some examples of sexual dimorphism in attraction. The significance of certain compounds and receptor neurons for olfactory-guided behavior of phytophagous scarabs is discussed.

Coleoptera Scarabaeidae Cetoniinae olfaction Odor attraction olfactometer food fruit flower plant bioassay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arredondo-Bernal, H. C., Cibrián-Tovar, J., and Williams, R. N. 1995. Responses of Macrodactylus spp. (Coleoptera: Scarabaeidae) and other insects to food attractants in Tlaxcala and Jalisco, Mexico. Fl. Entomol. 78:56–61.Google Scholar
  2. Barata, E. N., Mustaparta, H., Pickett, J. A., Wadhams, L. J., and Araujo, J. 2002. Encoding of host and non-host plant odors by receptor neurones in the eucalyptus woodborer, Phoracantha semipunctata (Coleoptera: Cerambycidae). J. Comp. Physiol. A 188:121–133.Google Scholar
  3. Ben-Yakir, D., Bazar, A., and Chen, M. 1995. Attraction of Maladera matrida (Coleoptera: Scarabaeidae) to eugenol and other lures. J. Econ. Entomol. 88:415–420.Google Scholar
  4. Blight, M. M., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1995. Antennal perception of oilseed rape, Brassica napus (Brassicaceae) volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera: Curculionidae). J. Chem. Ecol. 21:1649–1664.Google Scholar
  5. Byers, J. A. 1995. Host tree chemistry affecting colonization in bark beetles, pp. 154-213, in R. T. Cardé and W. J. Bell (Eds.). Chemical Ecology of Insects 2. Chapman and Hall, New York.Google Scholar
  6. de Bruyne, M., Clyne, P. J., and Carlson, J. R. 1999. Odor coding in a model olfactory organ: The Drosophila maxillary palp. J. Neurosci. 19:4520–4532.Google Scholar
  7. de Bruyne, M., Foster, K., and Carlson, J. R. 2001. Odor coding in the Drosophila antenna. Neuron 30:537–552.Google Scholar
  8. Domek, J. M. and Johnson, D. T. 1988. Demonstration of semiochemically induced aggregation of the green June beetle, Cotinis nitida (L.) (Coleoptera: Scarabaeidae). Environ. Entomol. 17:147–149.Google Scholar
  9. Donaldson, J. M. I., McGovern, T. P., and Ladd, T. L., Jr. 1986. Trapping techniques and attractants for Cetoniinae and Rutelinae (Coleoptera: Scarabaeidae). J. Econ. Entomol. 79:374–377.Google Scholar
  10. Donaldson, J. M. I., McGovern, T. P., and Ladd, T. L., Jr. 1990. Floral attractants for Cetoniinae and Rutelinae (Coleoptera: Scarabaeidae). J. Econ. Entomol. 83:1298–1305.Google Scholar
  11. Fleming, W. E. 1972. Biology of the Japanese beetle. US Dep. Agric. Tech. Bull. 1449.Google Scholar
  12. Hansson, B. S., Larsson, M. C., and Leal, W. S. 1999. Green leaf volatile-detecting olfactory receptor neurones display very high sensitivity and specificity in a scarab beetle. Physiol. Entomol. 24:121–126.Google Scholar
  13. Harari, A. R., Ben-Yakir, D., and Rosen, D. 1994. Mechanism of aggregation behavior in Maladera matrida Argaman (Coleoptera: Scarabaeidae). J. Chem. Ecol. 20:361–371.Google Scholar
  14. Heath, J. J., Williams, R. N., and Phelan, P. L. 2001. High light intensity: A critical factor in the wind-tunnel flight of two scarabs, the rose chafer and Japanese beetle. J. Chem. Ecol. 27:419–429.Google Scholar
  15. Klein, M. G. and Edwards, D. C. 1989. Captures of Popillia lewisi (Coleoptera: Scarabaeidae) and other scarabs on Okinawa with Japanese beetle lures. J. Econ. Entomol. 82:101–103.Google Scholar
  16. Knudsen, J. T., Tollsten, L., and Bergström, L. G. 1993. Floral scents—A checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280.Google Scholar
  17. Ladd, T. L. and McGovern, T. P. 1980. Japanese beetle: A superior attractant, Phenethyl propionate + Eugenol + Geraniol, 3:7:3. J. Econ. Entomol. 73:689–691.Google Scholar
  18. Langford, G. S., Muma, M. H., and Cory, E. N. 1943. Attractiveness of certain plant constituents to the Japanese beetle. J. Econ. Entomol. 36:248–252.Google Scholar
  19. Larsson, M. C., Leal, W. S., and Hansson, B. S. 2001. Olfactory receptor neurons detecting plant odors and male volatiles in Anomala cuprea beetles (Coleoptera: Scarabaeidae). J. Insect Physiol. 47:1065–1076.Google Scholar
  20. Leal, W. S. 1991. (R,Z)-5-(−)-(Oct-1-enyl)oxacyclopentan-2-one, the sex pheromone of the scarab beetle Anomala cuprea. Naturwissenschaften 78:521–523.Google Scholar
  21. Leal, W. S. 1998. Chemical ecology of phytophagous scarab beetles. Annu. Rev. Entomol. 43:39–61.Google Scholar
  22. Leal, W. S., Ono, M., Hasegawa, M., and Sawada, M. 1994. Kairomone from dandelion, Taraxacum officinale, attractant for scarab beetle Anomala octiescostata. J. Chem. Ecol. 20:1697–1704.Google Scholar
  23. Lin, H. and Phelan, P. L. 1991. Identification of food volatiles attractive to dusky sap beetle, Carpophilus lugubris (Coleoptera: Nitidulidae). J. Chem. Ecol. 17:1273–1286.Google Scholar
  24. Loughrin, J. H., Potter, D. A., and Hamilton-Kemp, T. R. 1995. Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese Beetle (Popillia japonica Newman). J. Chem. Ecol. 21:1457–1467.Google Scholar
  25. Loughrin, J. H., Potter, D. A., and Hamilton-Kemp, T. R. 1998. Attraction of Japanese beetles (Coleoptera: Scarabaeidae) to host plant volatiles in field trapping experiments. Environ. Entomol. 27:395–400.Google Scholar
  26. Loughrin, J. H., Potter, D. A., Hamilton-Kemp, T. R., and Byers, M. E., 1996a. Volatile compounds from Crabapple (Malus spp.) cultivars differing in susceptibility to the Japanese beetle (Popillia japonica Newman). J. Chem. Ecol. 22:1295–1305.Google Scholar
  27. Loughrin, J. H., Potter, D. A., Hamilton-Kemp, T. R., and Byers, M. E., 1996b. Role of feeding-induced plant volatiles in aggregative behavior of the Japanese beetle (Coleoptera: Scarabaeidae). Environ. Entomol. 25:1188–1191.Google Scholar
  28. Loughrin, J. G., Potter, D. A., Hamilton-Kemp, T. R., and Byers, M. E., 1997a. Response of Japanese Beetles (Coleoptera: Scarabaeidae) to leaf volatiles of susceptible and resistant maple species. Environ. Entomol. 26:334–342.Google Scholar
  29. Loughrin, J. G., Potter, D. A., Hamilton-Kemp, T. R., and Byers, M. E., 1997b. Diurnal emission of volatile compounds by Japanese beetle-damaged grape leaves. Phytochemistry 45:919–923.Google Scholar
  30. Metcalf, R. L. and Metcalf, E. R. 1992. Plant Kairomones in Insect Ecology and Control. Chapman and Hall, New York.Google Scholar
  31. Nikonov, A. A., Peng, G., Tsurupa, G., and Leal, W. S. 2002. Unisex pheromone detectors and pheromone-binding proteins in scarab beetles. Chem. Senses 27:495–504.Google Scholar
  32. Nout, M. J. R. and Bartelt, R. J. 1998. Attraction of a flying nitidulid (Carpophilus humeralis) to volatiles produced by yeasts grown on sweet corn and a corn-based medium. J. Chem. Ecol. 24:1217–1239.Google Scholar
  33. Omura, H., Honda, K., and Hayashi, N. 2000. Identification of feeding attractants in oak sap for adults of two nymphalid butterflies, Kaniska canace and Vanessa indica. Physiol. Entomol. 25:281–287.Google Scholar
  34. Peacock, L., Lewis, M., and Powers, S. 2001. Volatile compounds from Salix spp. varieties differing in their susceptibility to three willow beetle species. J. Chem. Ecol. 27:1943–1951.Google Scholar
  35. Phelan, P. L. and Lin, H. C. 1991. Chemical characterization of fruit and fungal volatiles attractive to dried-fruit beetle, Carpophilus hemipterus (L.) (Coleoptera: Nitidulidae). J. Chem. Ecol. 17:1253–1272.Google Scholar
  36. Potter, D. A. and Held, D. W. 1999. Absence of food-aversion learning by a polyphagous scarab, Popillia japonica, following intoxication by geranium, Pelargonium x hortorum. Entomol. Exp. Appl. 91:83–88.Google Scholar
  37. Reinecke, A., Ruther, J., and Hilker, M., 2002a. The scent of food and defence: Green leaf volatiles and toluquinone as sex attractant mediate mate finding in the European cockchafer Melolontha melolontha. Ecol. Lett. 5:257–263.Google Scholar
  38. Reinecke, A., Ruther, J., Tolasch, T., Francke, W., and Hilker, M., 2002b. Alcoholism in cockchafers: Orientation of male Melolontha melolontha towards green leaf alcohols. Naturwissenschaften 89:265–269.Google Scholar
  39. Renwick, J. A. A. 1989. Chemical ecology of oviposition in phytophagous insects. Experientia 45:223–228.Google Scholar
  40. Rigout, J. 1989. The Beetles of the World. Vol. 9: The Cetoniini. Science Nat., Venette.Google Scholar
  41. Rochat, D., Nagnan-Le Meillour, P., Esteban-Duran, J. R., Malosse, C., Perthuis, B., Morin, J.-P., and Descoins, C., 2000b. Identification of pheromone synergists in American palm weevil, Rhynchophorus palmarum, and attraction of related Dynamis borassi. J. Chem. Ecol. 26:155–187.Google Scholar
  42. Rochat, D., Ramirez-Lucas, P., Malosse, C., Rosa, A., Titus, K., and Morin, J. P., 2000a. Role of solid-phase microextraction in the identification of highly volatile pheromones of two Rhinoceros beetles Scapanes australis and Strategus aloes (Coleoptera: Scarabaeidae, Dynastinae). J. Chromatogr. A 885:433–444.Google Scholar
  43. Ruther, J., Reinecke, A., and Hilker, M. 2002. Plant volatiles in the sexual communication of Melolontha hippocastani: Response towards time dependent bouquets and novel function of (Z)-3-hexen-1-ol as a sexual kairomone. Ecol. Entomol. 27:76–83.Google Scholar
  44. Ruther, J., Reinecke, A., Thiemann, K., Tolasch, T., Francke, W., and Hilker, M. 2000. Mate finding in the forest cockchafer, Melolontha hippocastani, mediated by volatiles from plants and females. Physiol. Entomol. 25:172–179.Google Scholar
  45. Schlyter, F. and Birgersson, G. A. 1999. Forest beetles, pp. 113-148, in J. Hardie and A. K. Minks (Eds.). Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants. CABI Publishing, Wallingford, United Kingdom.Google Scholar
  46. Stensmyr, M. C., Larsson, M. C., Bice, S. B., and Hansson, B. S. 2001. Detection of fruit-and flower-emitted volatiles by olfactory receptor neurons in the polyphagous fruit chafer Pachnoda marginata (Coleoptera: Cetoniinae). J. Comp. Physiol. A 187:509–519.Google Scholar
  47. Van der Pers, J. N. C. and Löfstedt, C. 1983. Continuous single sensillum recording as a detection method for moth pheromone components in the effluent of a gas chromatograph. Physiol. Entomol. 8:203–211.Google Scholar
  48. Visser, J. H. and Avé, D. A. 1978. General green leaf volatiles in the olfactory orientation of the Colorado beetle, Leptinotarsa decemlineata. Entomol. Exp. Appl. 24:738–749.Google Scholar
  49. Wadhams, L. J., Angst, M. E., and Blight, M. M. 1982. Responses of the olfactory receptors of Scolytus scolytus (F.) (Coleoptera: Scolytidae) to the stereoisomers of 4-methyl-3-heptanol. J. Chem. Ecol. 8:477–492.Google Scholar
  50. Wibe, A., Borg-Karlsson, A.-K., Norin, T., and Mustaparta, H. 1997. Identification of plant volatiles activating single receptor neurons in the pine weevil (Hylobius abietis). J. Comp. Physiol. A 180:585–595.Google Scholar
  51. Williams, R. N., McGovern, T., Klein, M. G., and Fickle, D. S. 1990. Rose chafer (Coleoptera: Scarabaeidae): Improved attractants for adults. J. Econ. Entomol. 83:111–116.Google Scholar
  52. Williams, R. N. and Miller, K. V. 1982. Field assay to determine attractiveness of various aromatic compounds to rose chafer adults. J. Econ. Entomol. 75:196–198.Google Scholar
  53. Yokomizo, K. and Nagata, K. 1984. Attractants for scarabaeid beetles. Shokobutsoeki 38:403-406. (in Japanese).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Mattias C. Larsson
    • 1
  • Marcus C. Stensmyr
    • 1
  • Shannon B. Bice
    • 1
  • Bill S. Hansson
    • 1
  1. 1.Department of Crop Science, Chemical EcologySwedish University of Agricultural SciencesAlnarpSweden
  2. 2.Department of Neurobiology and BehaviorCornell UniversityIthacaUSA

Personalised recommendations