Advertisement

Journal of Applied Phycology

, Volume 15, Issue 2–3, pp 263–267 | Cite as

Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB 051

  • Sabine Mundt
  • Susann Kreitlow
  • Rolf Jansen
Article

Abstract

Bioassay-guided fractionation of the n-hexane extract prepared from the biomass of the cyanobacterium Oscillatoria redekei syn. Limnothrix redekei HUB 051 by silica gel and RP-18 column chromatography followed by HPLC resulted in the isolation of a mixture of two unsaturated hydroxy fatty acids. Their further separation using normal phase HPLC resulted in the identification of α-dimorphecolic acid, a 9-hydroxy-10E, 12Z-octadecadienoic acid (9-HODE) and of coriolic acid, a 13-hydroxy-9Z, 11E-octadecadienoic acid (13-HODE). In agar plate diffusion test these fatty acids inhibited the growth of the Gram-positive bacteria Bacillus subtilis SBUG 14, Micrococcus flavus SBUG 16 and Staphylococcus aureus SBUG 11 and ATCC 25923, but no activity was observed against multiresistant Staphylococcus aureus strains. This is the first report about antibacterial activity of these hydroxylated unsaturated fatty acids and about the occurrence of coriolic acid in cyanobacteria.

α-dimorphecolic acid Agar plate diffusion test Antibacterial activity Coriolic acid Cyanobacteria Hydroxy fatty acids Limnothrix redekei Minimal inhibition concentration Oscillatoria redekei 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belay A., Ota Y., Miyakawa K. and Shimamatsu H. 1993. Current knowledge on potential health benefits of Spirulina. J. appl. Phycol. 5: 235-241.Google Scholar
  2. Brovkovych V.M., Molbenko A.A., Butovich I.A., Brovkovych S.D. and Ogyl S.A. 1996. Effect of linoleic acid lipoxygenase derivatives on the functional activity of neutrophils. Ukr. Biokhim. Zh. 68: 79-84.Google Scholar
  3. Buchanan M.R., Haas T.A., Lagarde M. and Guichardant M. 1985. 13-Hydroxyoctadecadienoic acid is the vessel wall chemorepellant factor LOX. J. Biol. Chem. 260: 16056-16059.Google Scholar
  4. Chrost R.J. 1975. Inhibitors produced by algae as an ecological factor affecting bacteria in water ecosystems. Acta microbiol. Pol. Ser. B 7: 125-133.Google Scholar
  5. Engels F., Kessels G.C.R., Henricks P.A.J. and Nijkamp F.P. 1996. Preferential formation of 13-hydoxylinoleic acid by human blood eosinophiles. Prostaglandins 52: 117-124.Google Scholar
  6. Falch B.S. 1996. Was steckt in Cyanobakterien? Pharmazie in unserer Zeit 25: 311-321.Google Scholar
  7. Fu Y., Luo N., Lopes-Virella M.F. and Garvey W.T. 2002. The adipocyte binding protein (ALBP/aP2) gene facilitates foam cell formation in human THP-1 macrophages. Atherosclerosis 165: 259-269.Google Scholar
  8. Hayashi Y., Nishikawa Y., Mori H., Tamura H. and Matsushita Y.I. et al. 1998. Antitumor activity of (10E, 12Z)-9-Hydroxy-10, 12-octadecadienoic acid from rice bran. J. Ferment. Bioengng 86: 149-153.Google Scholar
  9. Henderson W.R. Jr, Rashed M., Yong E.C., Fritsche T.R. and Chiang G.K. 1992. Toxoplasma gondii stimulates the release of 13-and 9-hydroxyoctadecadienoic acids by human platelets. 1992. Biochemistry 31: 5356-5362.Google Scholar
  10. Henricks P.A.J., Engels F., Van der Vliet H. and Nijkamp F.P. 1991. 9-and 13-hydroxylinoleic acids possess chemotactic activity for bovine and human polymorphonuclear leukocytes. Prostaglandins 41: 21-27.Google Scholar
  11. Henry D.Y., Gueritte-Voegelein F., Insel P.A., Ferry N. and Bouget J. 1987. Isolation and characterization of 9-hydroxy-10-trans, 12-cis-octadecadienoic acid, a novel regulator of platelet adenylate cyclase from Glechoma hederacea L. Labiatae. Eur. J. Biochem. 170: 389-394.Google Scholar
  12. Hooper G.J., Orjala J., Schatzman R.C. and Gerwick W.H. 1998. Carmabins A and B, new lipopeptides from the Caribbean cyanobacterium Lyngbya majuscula. J. nat. Prod. 61: 529-533.Google Scholar
  13. Jira W., Spiteller G. and Richter A. 1997. Increased levels of lipid oxidation products in low density lipoproteins of patients suffering from rheumatoidarthritis. Chem. phys. Lipids 87: 81-89.Google Scholar
  14. Johnson D.V. and Griengl H. 1997. The chemoenzymatic synthesis of (S)-13-Hydroxyoctadeca-(9Z, 11E)-dienoic acid using the hydroxynitrile lyase from Hevea brasiliensis. Tetrahedron 53: 617-624.Google Scholar
  15. Kato T., Yamaguchi Y., Namai T. and Hirukawa T. 1993. Oxygenated fatty acids with anti-rice blast fungus activity in rice plants. Biosci. biotechnol. Biochem. 57: 283-287.Google Scholar
  16. Kleinkauf H. and von Döhren H. 1997. Products of secondary metabolism. In: Rehm H.J. and Reed G. (eds), Biotechnology. Vol. 7. VCH, Weinheim, pp. 308-309.Google Scholar
  17. Kraus R., Spiteller G. and Bartsch W. 1991. (10E, 12Z)-9-Hydroxy-10, 12-octadecadiensäure, ein Aromatase-Hemmstoff aus dem Wurzelextrakt von Urtica dioica. Liebigs ann. Chem. 4: 335-339.Google Scholar
  18. Kreitlow S., Mundt S. and Lindequist U. 1999. Cyanobacteria - a potential source of new biologically active substances. J. Biotechnol. 70: 61-63.Google Scholar
  19. Kühn H., Belker J. and Wiesner R. 1989. Occurrence of free and esterified lipoxygenase products in leaves of Glechoma hederacea L. and other Labiatae. Eur. J. Biochem. 186: 155-162.Google Scholar
  20. Kuo J.M., Hwang A. and Yeh D.B. 1997. Purification, substrate specificity and products of a Ca2+ stimulating lipoxygenase from sea algae (Ulva lactuca). J. agric. Food Chem. 45: 2055- 2060.Google Scholar
  21. Meffert M.E. 1971. Cultivation and growth of two planktonic Oscillatoria species. Mitt. int. Ver. Limnol. 19: 189-205.Google Scholar
  22. Mundt S., Kreitlow S., Nowotny A. and Effmert U. 2001. Biochemical and pharmacological investigations of selected cyanobacteria. Int. J. Hyg. environ. Health 203: 327-334.Google Scholar
  23. Murakami N., Shirahashi H., Nagatsu A. and Sakakibara J. 1992. Two unsaturated 9R-hydroxyfatty acids from the cyanobacterium Anabaena flos aquae f. aquae. Lipids 27: 776-778.Google Scholar
  24. Nagaoka T., Ohra J., Yoshihara T. and Sakamura S. 1995. Fungitoxic compounds from the roots of tomato stock. Ann. phytopathol. Soc. Jpn. 61: 103-108.Google Scholar
  25. Niitsu K., Ikeya Y., Sato T., Katayama N., Fukuyama K. and Chin M. et al. 1987. Studies on the crude drug containing the angiotensin I-converting enzyme inhibitors (II). The active principles of Fritillaria verticillata Willdenow var. thunbergii Baker. Shoyakugaka Zasshi 41: 174-179.Google Scholar
  26. Pharmacopoea Europaea 2000. Nachtrag, Biologische Wertbestimmungen. Deutscher Apotheker Verlag Stuttgart, Govi-Verlag-Pharmazeutischer Verlag GmbH Eschborn, 87-90.Google Scholar
  27. Pongraz J. and Lord J.M. 1999. The lipoxygenase product 13-hydroxyoctadecadienoic acid (13-HODE) is a selective inhibitor of classical PKC isoenzymes. Biochem. biophys. Res. Commun. 256: 269-272.Google Scholar
  28. Potts M. 2000. Nostoc. In: Whitton B.A. and Potts M. (eds), The Ecology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, London, Boston, pp. 465-504.Google Scholar
  29. Sauer L.A., Dauchy R.T. and Blask D.E. 2001. Polyunsaturated fatty acids, melatonin and cancer prevention. Biochem. Pharmacol. 61: 1455-1462.Google Scholar
  30. Service R.F. 1995. Antibiotics that resist resistance. Science 270: 724-727.Google Scholar
  31. Sessa D.J., Gardner H.W., Kleimann R. and Weisleder D. 1977. Oxygenated fatty acid constituents of soybean phosphatidylcholines. Lipids 12: 613-619.Google Scholar
  32. Singh I.P., Milligan K.E. and Gerwick W.H. 1999. Tanikolide, a toxic and antifungal lactone from the marine cyanobacterium Lyngbya majuscula. J. nat. Prod. 62: 1333-1335.Google Scholar
  33. Smith C.R. Jr, Wilson T.L., Melvin E.H. and Wolff I.A. 1960. Dimorphecolic acid - a unique hydroydienoic fatty acid. J. am. chem. Soc. 82: 1417-1421.Google Scholar
  34. Stadler M., Mayer A., Anke H. and Sterner O. 1994. Fatty acids and other compounds with nematocidal activity from cultures of Basidiomycetes. Planta Med. 60: 128-132.Google Scholar
  35. Tallent W.H., Harris J. and Wolff I.A. 1966. (R)-13-Hydroxy-cis-9, trans-11-octadecadienoic acid, a principal fatty acid from Coriaria nepalensis Wall. Seed Oil. Tetrahedron Lett. 36: 4329-4334.Google Scholar
  36. Xi S., Pham H. and Ziboh V.A. 2000. Suppression of proto-oncogene (AP-1) in model of skin epidermal hyperproliferation is reversed by topical application of 13-hydroxyoctadecadienoic acid and 15-hydroxyeicosatrienoic acid. Prostaglandins Leukot. Essent. Fatty Acids 62: 13-19.Google Scholar
  37. Zhmyrko T.G., Rashkes Y.V. and Glushenkova A.I. 1986. Hydroxyacids in oil of Hippophae rhamnoides seeds. Khim. Prir. Soedin. 2: 161-168.Google Scholar
  38. Ziboh V.A., Miller C.C. and Cho Y. 2000. Metabolism of polyunsaturated fatty aids by skin epidermal enzymes: generation of anti-inflammatory and antiproliferative metabolites. Am. J. Clin. Nutr. 71: 361S-366S.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Sabine Mundt
    • 1
  • Susann Kreitlow
    • 1
  • Rolf Jansen
    • 2
  1. 1.Institute of Pharmacy, Department of Pharmaceutical BiologyErnst-Moritz-Arndt-UniversityGreifswaldGermany
  2. 2.Department of Natural Product ChemistryGerman Research Centre for BiotechnologyBraunschweigGermany

Personalised recommendations