Journal of Applied Spectroscopy

, Volume 70, Issue 2, pp 216–223 | Cite as

Collisional Depolarization of the Luminescence of Asymmetric Top Molecules in the Gas Phase

  • A. P. Blokhin
  • M. F. Gelin


To describe the collisional depolarization of the luminescence of asymmetric top polyatomic molecules, integral and integrodifferential forms of master equations, in which the effect of collisions is determined by the conditional probabilities of an instantaneous error of rotational phase variables, have been obtained. A symmetry analysis of the master equations has been performed, and it has been shown that in the general case the evolution of optically induced anisotropy is given by five independent relaxation components. The kinetic equations derived are initial equations for specific calculations of the anisotropy relaxation in various collisional models. They make it possible to study the influence of the angular momentum transfer efficiency on the orientational relaxation of anisotropy in a wide range of buffer medium densities: from free rotation to binary collisions in the gas and then to rotational diffusion.

depolarization of fluorescence binary collisions kinetic equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Gaisenok and A. M. Sarzhevskii, Anisotropy of Absorption and Luminescence of Polyatomic Molecules [in Russian], Minsk (1986).Google Scholar
  2. 2.
    A. I. Burshtein and S. I. Temkin, Spectroscopy of Molecular Rotations in Gases and Liquids, Cambridge University Press, Cambridge (1994).Google Scholar
  3. 3.
    A. P. Blokhin, M. F. Gelin, O. V. Buganov, V. A. Dubovskii, S. A. Tikhomirov, and G. B. Tolstorozhev, Zh. Prikl. Spektrosk., 70, 66–72 (2003).Google Scholar
  4. 4.
    A. P. Blokhin, V. N. Knyukshto, and V. A. Tolkachev, Izv. Akad. Nauk SSSR, Ser. Fiz., 42, No. 2, 359–365 (1978).Google Scholar
  5. 5.
    A. P. Blokhin and V. A. Tolkachev, Opt. Spektrosk., 51, No. 2, 278–284 (1981).Google Scholar
  6. 6.
    A. P. Blokhin, Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk, No. 2, 70–79 (1986).Google Scholar
  7. 7.
    D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of the Angular Momentum [in Russian], Leningrad (1975).Google Scholar
  8. 8.
    A. P. Blokhin, Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk, No. 4, 77–86 (1986).Google Scholar
  9. 9.
    K. Lindenberg and R. I. Cukier, J. Chem. Phys., 67, 568–578 (1977).Google Scholar
  10. 10.
    A. A. Zharikov, S. I. Temkin, and A. I. Burshtein, Chem. Phys., 103, 1–10 (1986).Google Scholar
  11. 11.
    M. F. Gelin, in: Preprint IC/98/58 of the International Centre for Theoretical Physics, Trieste, Italy (1998), pp. 1–7.Google Scholar
  12. 12.
    R. G. Gordon, J. Chem. Phys., 44, 1830–1836 (1966).Google Scholar
  13. 13.
    A. G. Pierre and W. A. Steele, J. Chem. Phys., 57, 4638–4648 (1972).Google Scholar
  14. 14.
    R. E. D. McClung, J. Chem. Phys., 57, 5478–5491 (1972).Google Scholar
  15. 15.
    R. E. D. McClung, Adv. Molec. Rel. Inter. Proc., 10, No. 2, 83–169 (1977).Google Scholar
  16. 16.
    H. Rabitz, Ann. Rev. Phys. Chem., 25, 155–177 (1974).Google Scholar
  17. 17.
    A. P. Blokhin and M. F. Gelin, Khim. Fiz., 17, No. 12, 104–115 (1998).Google Scholar
  18. 18.
    M. Fixman and K. Rider, J. Chem. Phys., 15, 2425–2438 (1969).Google Scholar
  19. 19.
    M. Constant, R. Fauquembergue, and P. Descheerder, J. Chem. Phys., 72, 2459–2465 (1980).Google Scholar
  20. 20.
    J. Lascombe, M. Besnard, and P. Maraval, Chem. Phys., 72, 177–184 (1982).Google Scholar
  21. 21.
    C. Dreyfus, C. Breuillard, N. T. Tai, and R. Ouillon, Chem. Phys. Lett., 62, 246–249 (1979).Google Scholar
  22. 22.
    S. Dattagupta and A. K. Sood, Pramana, 13, 423–425 (1979).Google Scholar
  23. 23.
    S. K. Deb and K. V. Bhagavat, Chem. Phys., 98, 251–258 (1985).Google Scholar
  24. 24.
    R. E. D. McClung, J. Chem. Phys., 75, 5503–5513 (1981).Google Scholar
  25. 25.
    D. H. Lee and R. E. D. McClung, Chem. Phys., 112, 23–41 (1987).Google Scholar
  26. 26.
    A. P. Blokhin and M. F. Gelin, Khim. Fiz., 13, No. 1, 14–20 (1994).Google Scholar
  27. 27.
    A. P. Blokhin and M. F. Gelin, Khim. Fiz., 16, No. 1, 39–49, 50–59 (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • A. P. Blokhin
    • 1
  • M. F. Gelin
    • 1
  1. 1.Institute of Molecular and Atomic PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations