, Volume 7, Issue 3, pp 78–89 | Cite as

Integrated Design for Solid Catalysts in Multiphase Reactions

  • G. Centi
  • S. Perathoner


The integrated design for solid catalysts in multiphase reactions requires consideration of all the different levels of scale involved in the reaction which should be simultaneously addressed in an integrated view with the reactor design. Emphasis is given here to three main levels (nano-, micro- and macro-scale) at which catalyst design should be considered. The main concepts discussed are (i) control of the local effective concentration of reagents and possible deactivating molecules around the active sites by incorporating them into nanoporous cavities and by tuning the hydrophilic character of the support, (ii) possibilities offered by microstructuring the catalyst composition (multilayer design and microassembled catalyst bodies) and (iii) opportunities offered by the use of macrostructured catalysts (monoliths, cloths and membranes). The various levels of design are not independent. They must be considered in an integrated view and in close relationship with reactor design.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. P. Dudukovic, F. Larachi and P. L. Mills, Chem. Eng. Science, 54 (1999) 1975.Google Scholar
  2. [2]
    R. K. Krishna and S. T. Sie, Chem. Eng. Science, 49 (1994) 4029.Google Scholar
  3. [3]
    M. P. Dudukovic, Catal. Today, 48 (1999) 5.Google Scholar
  4. [4]
    G. Centi, F. Guarnieri and S. Perathoner, J. Chem. Soc., Faraday Trans., 93 (1997) 3391.Google Scholar
  5. [5]
    A. Cybulski and J. A. Moulijn, Structured Catalysts and Reactors, Chemical Industries Vol. 71, M. Dekker Pub.: New York 1998.Google Scholar
  6. [6]
    F. Kapteijn, J. J. Heiszwolf, T. A. Niihuis and J. A. Moulijn, CATTECH, 3 (1999) 24.Google Scholar
  7. [7]
    T. A. Nijhuis, M. T. Kreutzer, A. C. J. Romijn, F. Kapteijn and J. A. Moulijn, Chem. Eng. Science, 56 (2001) 823.Google Scholar
  8. [8]
    U. Chowdhry, M. A. Subramanian and R. A Van Santen, Current Opinion in Solid State & Materials Science, 4 (1999) 53.Google Scholar
  9. [9]
    M. Morbidelli, A. Gavriilidis and A. Varma, Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors and Membranes, Cambridge University Press, Cambridge, U.K. (2001).Google Scholar
  10. [10]
    M. E. Davis, Chem. Eng. Science, 49 (1994) 3971.Google Scholar
  11. [11]
    M. K. Carter, Preprints of Papers-American Chemical Society, Division of Fuel Chemistry, 42 (1997) 649.Google Scholar
  12. [12]
    A. Baiker, J-D. Grunwaldt, C. A. Mueller and L. Schmid Leo, Chimia, 52 (1998) 517.Google Scholar
  13. [13]
    D. L. Trimm, Pure and Applied Chemistry, 50 (1978) 1147.Google Scholar
  14. [14]
    S. Klein and W. F. Maier, Angewandte Chemie, 35 (1996) 2230.Google Scholar
  15. [15]
    S. T. Sie and R. Krishna, Rev. in Chem. Eng., 14 (1998) 159.Google Scholar
  16. [16]
    J. M. Basset, F. Lefebvre and C. Santini, Coord. Chem. Rev., 178 (1998) 1703.Google Scholar
  17. [17]
    H. Idriss and M. A. Barteau, Adv. Catal., 45 (2000) 261.Google Scholar
  18. [18]
    M. E. Davis, Studies in Surface Science and Catal., 130A (2000) 49.Google Scholar
  19. [19]
    G. J. Hutchings, W. Graeme and D. J. Willock, Chem. & Ind., 15 (1997) 603.Google Scholar
  20. [20]
    A. Baiker, Studies in Surface Science and Catal., 101A (2000) 51.Google Scholar
  21. [21]
    A. Yamaguchi, K. Asakura and Y. Iwasawa, J. Molec. Catal. A: Chem., 146 (1999) 65.Google Scholar
  22. [22]
    M. E. Davis, A. Katz and W. R. Ahmad, Chem. Materials, 8 (1996) 1820.Google Scholar
  23. [23]
    A. Suzuki, M. Tada, T. Sasaki, T. Shido and Y. Ywasawa, J. Molec. Catal. A: Chem., 182-183 (2002) 125.Google Scholar
  24. [24]
    A. P. Wight and M. E. Davis, Chem. Rev., 102 (2002) 3589.Google Scholar
  25. [25]
    G. Centi, F. Cavani and F. Trifiró, Selective Oxidation by Heterogeneous Catalysis, Kluwer Acad./Plenum Pub., New York (2001).Google Scholar
  26. [26]
    B. K. Marcus and W. F. Cormier, Chem. Eng. Progress, 95 (1999) 47.Google Scholar
  27. [27]
    C. Schüh, S. Disser, F. Schüth and M. Reinhard, Appl. Catal. B: Env., 28 (2000) 147.Google Scholar
  28. [28]
    G. Centi, A. Grande and S. Perathoner, Catal. Today, 75 (2002) 69.Google Scholar
  29. [29]
    G. Centi and S. Perathoner, Chim. Ind. (Milan), 1-2 (2001) E1/1.Google Scholar
  30. [30]
    G. Centi, S. Perathoner and G. Romeo, Studies in Surface Science and Catal., 135 (2001) 181.Google Scholar
  31. [31]
    G. Centi, S. Perathoner, T. Torre and M. G. Verduna, Catal. Today, 55 (2000) 61.Google Scholar
  32. [32]
    G. Linden, G. Hefele, F. Rosowski, M. Seufert, T. Heidemann and M. P. Lorz, DE Patent 198 24532 (1999) assigned to BASF AGGoogle Scholar
  33. [33]
    A. Gavriilidis and A. Varma, Catal. Rev-Sci. Eng., 35 (1993) 399.Google Scholar
  34. [34]
    K. van Gorp, E. Boerman, C.V. Cavenaghi and P.H. Berben, Catal. Today, 52 (1999) 349.Google Scholar
  35. [35]
    M. Hähnlein, U. Prüsse, J. Daum, V. Morawsky, M. Kröger, M. Schröder, M. Schnabel and K. D. Vorlop, Studies in Surface Science and Catal., 118 (1998) 99.Google Scholar
  36. [36]
    U. Prüsse, V. Morawsky, A. Dierich, A. Vaccaro and K. D. Vorlop, Studies in Surface Science and Catal., 118 (1998) 137.Google Scholar
  37. [37]
    O. O. Ilinitch, P. A. Simonov and F. P. Cuperus, Studies in Surface Science and Catal., 118 (1998) 55.Google Scholar
  38. [38]
    G. Saracco and V. Speccia, Catal. Rev.-Sci. Eng., 36 (1994) 304.Google Scholar
  39. [39]
    F. Kapteijn, T. A. Nijhuis, J. J. Heiszwolf and J. A. Moulijn, Catal. Today, 66 (2001) 133.Google Scholar
  40. [40]
    Th. Vergunst, F. Kapteijn and J. A. Moulijn, Studies in Surface Science and Catal., 118 (1998) 175.Google Scholar
  41. [41]
    J. C. Jansen, J. H. Koegler, H. v. Bekkum, H. P. Calis, C. M. v.d. Bleek, F. Kapteijn, J. A. Moulijn, E. R. Geus and N. v.d. Puil, Micropor. Mesopor. Mater., 21 (1998) 213.Google Scholar
  42. [42]
    S. Irandoust, B. Andersson, E. Bengtsson and M. Siverstroem, Ind. Eng. Chem. Res., 28 (1989) 1489.Google Scholar
  43. [43]
    F. Rosowski, S. Stork and A. Tenten, Proceedings 4th World Congress on Oxidation Catalysis, Berlin, Sepr. 16-21, 2001; Dechema Pub.: Frankfurt A.M. (Germany), Vol. II, p. 415.Google Scholar
  44. [44]
    K. Lavelle and J. B. McMonagle, Chem. Eng. Science, 56 (2001) 5091.Google Scholar
  45. [45]
    F. Štepáanek, M. Marek, J. Hanika and P. M. Adler, Catal. Today, 66 (2001) 249.Google Scholar
  46. [46]
    L. Kiwi-Minsker, I. Yuranov, V. Höller and A. Renken, Chem. Eng. Science, 54 (1999) 4785.Google Scholar
  47. [47]
    V. Holler, D. Wegricht, I. Yuranov, L. Kiwi-Minsker and A. Renken, Chem. Eng. & Techn., 23 (2000) 251.Google Scholar
  48. [48]
    (a)Y. Matatov-Meytal, V. Barelko, I. Yuranov and M. Sheintuch, Appl. Catal. B: Env., 27 (2000) 127. (b)Y. Matatov-Meytal, V. Barelko, I. Yuranov, L. Kiwi-Minsker, A. Renken and M. Sheintuch, Appl. Catal. B: Env., 31 (2001) 233.Google Scholar
  49. [49]
    A. K. Ray, Chem. Eng. Science, 54 (1999) 3113.Google Scholar
  50. [50]
    J. Coronas and J. Santamaria, Catal. Today, 51 (1999) 377.Google Scholar
  51. [51]
    K. K. Sirkar, P. V. Shanbhag and A.S. Kovvali, Ind. & Eng. Chem. Res., 38 (1999) 3715.Google Scholar
  52. [52]
    V. Gryaznov, Catal. Today, 51 (1999) 391.Google Scholar
  53. [53]
    A. Julbe, D. Farrusseng and C. Guizard, J. Membrane Science, 181 (2001) 3.Google Scholar
  54. [54]
    R. Dittmeyer, V. Hölleina and K. Daub, J. Mol. Catal. A: Chem., 173 (2001) 135.Google Scholar
  55. [55]
    G. Centi, R. Dittmeyer, S. Perathoner and M. Reif, Catal. Today, acceptedGoogle Scholar
  56. [56]
    S. Niwa, M. Eswaramoorthy, J. Nair, A. Raj, N. Itoh, H. Shoji, T. Namba and F. Mizukami, Science, 295 (2002) 105.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • G. Centi
    • 1
  • S. Perathoner
    • 1
  1. 1.Department of Industrial Chemistry and Engineering of MaterialsMessinaItaly

Personalised recommendations