Journal of Chemical Ecology

, Volume 29, Issue 5, pp 1235–1252

Chemical Analysis of Volatiles Emitted by Pinus sylvestris After Induction by Insect Oviposition

  • Roland Mumm
  • Kai Schrank
  • Robert Wegener
  • Stefan Schulz
  • Monika Hilker
Article

Abstract

Gas chromatography – mass spectrometry analyses of the headspace volatiles of Scots pine (Pinus sylvestris) induced by egg deposition of the sawfly Diprion pini were conducted. The odor blend of systemically oviposition-induced pine twigs, attractive for the eulophid egg parasitoid Chrysonotomyia ruforum, was compared to volatiles released by damaged pine twigs (control) that are not attractive for the parasitoid. The mechanical damage inflicted to the control twigs mimicked the damage by a sawfly female prior to egg deposition. The odor blend released by oviposition-induced pine twigs consisted of numerous mono- and sesquiterpenes, which all were also present in the headspace of the artificially damaged control twigs. A quantitative comparison of the volatiles from oviposition-induced twigs and controls revealed that only the amounts of (E)-β-farnesene were significantly higher in the volatile blend of the oviposition-induced twigs. Volatiles from pine twigs treated with jasmonic acid (JA) also attract the egg parasitoid. No qualitative differences were detected when comparing the composition of the headspace of JA-treated pine twigs with the volatile blend of untreated control twigs. JA-treated pine twigs released significantly higher amounts of (E)-β-farnesene. However, the JA treatment induced a significant increase of the amount of further terpenoid components. The release of terpenoids by pine after wounding, egg deposition, and JA treatment is discussed with special respect to (E)-β-farnesene.

Egg deposition terpenoids monoterpenes sesquiterpenes induction jasmonic acid systemic effect Pinus sylvestris parasitoids sawfly Diprionidae Eulophidae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. P. 1995. Identification of Essential Oil—Components by Gas Chromatography/Mass Spectroscopy. Allured, Carol Stream, Illinois.Google Scholar
  2. Aducci, P. 1997. Signal Transduction in Plants. Molecular and Cell Biology Updates. Birkhäuser, Basel, Switzerland.Google Scholar
  3. Agrawal, A. A., Tuzun, S., and Bent, E. 1999. Induced Plant Defenses Against Pathogens and Herbivores. Biochemistry, Ecology, and Agriculture. APS Press, St. Paul, Minnesota.Google Scholar
  4. Al Abassi, S., Birkett, M. A., Petterson, J., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 2000. Response of the seven-spot ladybird to an aphid alarm pheromone and an alarm pheromone inhibitor mediated by paired olfactory cells. J. Chem. Ecol. 26:1765–1771.Google Scholar
  5. Baldwin, I. T. 1994. Chemical changes rapidly induced by folivory, pp. 1-23, in E. A. Bernays (ed.). Insect–Plant Interactions, Vol. 5. CRC Press, Boca Raton, Florida.Google Scholar
  6. Barnola, L. F., Hasegawa, M., and Cedono, A. 1994. Mono-and sesquiterpene variation in Pinus caribaea needles and its relationship to Atta laevigata herbivory. Biochem. Syst. Ecol. 22:437–445.Google Scholar
  7. Baser, K. H. C., Demirci, B., and Kirimer, N. 2002. Compositions of the essential oils of four Helichrysum species from Madagascar. J. Essent. Oil Res. 14:53–55.Google Scholar
  8. Beale, M. H. and Ward, J. L. 1998. Jasmonates: Key players in plant defence. Nat. Prod. Rep. 6:533–547.Google Scholar
  9. Bengtsson, M., Backman, A. C., Liblikas, I., Ramirez, M. I., Borg-Karlson, A. K., Ansebo, L., Anderson, P., Loefqvist, J., and Witzgall, P. 2001. Plant odor analysis of apple: Antennal response of codling moth females to apple volatiles during phenological development. J. Agric. Food Chem. 49:3731–3736.Google Scholar
  10. Bohlmann, J., Crock, J., Jetter, R., and Croteau, R. 1998. Terpenoid-based defences in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-α-bisabolene synthase from grand fir (Abies grandis). Proc. Natl. Acad. Sci. USA. 5:6756–6761.Google Scholar
  11. Boland, W., Hopke, J., Donath, J., Nüske, J., and Bublitz, F. 1995. Jasmonic acid and coronatine induce odor production in plants. Angew. Chem. Int. Ed. Engl. 34:1600–1602.Google Scholar
  12. Boland, W., Koch, T., Krumm, T., Piel, J., and Jux, A. 1999. Induced biosynthesis of insect semiochemicals in plants, pp. 110-126, in D. J. Chadwick and J. A. Goode (Eds.). Insect–Plant Interactions and Induced Plant Defence. Novartis Foundation Symposium 223. Wiley, Chicester, England.Google Scholar
  13. Bolter, C. J., Dicke, M., van Loon, J. J. A., Visser, J. H., and Posthumus, M. A. 1997. Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 23:1003–1023.Google Scholar
  14. Bombosch, S. and Ramakers, P. M. J. 1976. Zur Dauerzucht von Gilpinia hercyniae Htg. Z. Pflanzenkrank. Pflanzenschutz 83:40–44.Google Scholar
  15. Borg-Karlson, A.-K., Lindström, M., Norin, T., Persson, M., and Valterová, I. 1993. Enantiomeric composition of monoterpene hydrocarbons in different tissues of Norway spruce, Picea abies (L.) Karst. A multi-dimensional gas chromatography study. Acta Chem. Scand. 47:138–144.Google Scholar
  16. Chen, Z., Kolb, T. E., and Clancy, K. M. 2002. The role of monoterpenes in resistance of Douglas fir to western spruce budworm defoliation. J. Chem. Ecol. 28:897–920.Google Scholar
  17. Creelman, R. A. and Mullet, J. E. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:355–381.Google Scholar
  18. De Moraes, C. M., Lewis, W. J., Paré, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573.Google Scholar
  19. Dicke, M. 1994. Local and systemic production of volatile herbivore-induced terpenoids: Their role in plant–carnivore mutualism. J. Plant Physiol. 143:465–472.Google Scholar
  20. Dicke, M. 1999. Evolution of induced indirect defence of plants, pp. 62-88, in R. Tollrian and C. D. Harvell (Eds.). The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, New Jersey.Google Scholar
  21. Dicke, M., Gols, R., Ludeking, D., and Posthumus, M. A. 1999. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J. Chem. Ecol. 25:1907–1922.Google Scholar
  22. Dicke, M., Van Beek, T. A., Posthumus, M. A., Ben Dom, N., Van Bokhoven, H., and De Groot, A. E. 1990. Isolation and identification of volatile kairomone that affects acarine predator–prey interactions. J. Chem. Ecol. 16:381–396.Google Scholar
  23. Dicke, M. and van Loon, J. J. A. 2000. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exp. Appl. 97:237–249.Google Scholar
  24. Dicke, M. and Vet, L. E. M. 1999. Plant–carnivore interactions: Evolutionary and ecological consequences for plant, herbivore and carnivore, pp. 483-520, in H., Olff, V. K., Brown, and R. H. Drent (Eds.). Herbivores Between Plants and Predators. Blackwell Science, Oxford.Google Scholar
  25. Du, Y., Poppy, G. M., Powell, W., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1998. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J. Chem. Ecol. 24:1355–1369.Google Scholar
  26. Duffey, S. S. and Stout, M. J. 1996. Antinutritive and toxic components of plant defense against insects. Arch. Insect Biochem. Physiol. 32:3–37.Google Scholar
  27. Edwards, P. J. and Wratten, S. D. 1987. Ecological significance of wound induced changes in plant chemistry, pp. 213-219, in V., Labeyrie, G., Fabres, and D. Lachaise (Eds.). Insects–Plants: Proceedings of 6th International Symposium on Insect–Plant Relationships. Dr. W. Junk, The Hague.Google Scholar
  28. Eichhorn, O. 1976. Dauerzucht von Diprion pini L. (Hym.: Diprionidae) im Laboratorium unter Berücksichtigung der Fotoperiode. Anz. Schädlingskde. Pflanzenschutz Umweltschutz 49:38–41.Google Scholar
  29. Fäldt, J., Martin, D., Miller, B., Rawat, S., and Bohlmann, J. 2003. Traumatic resin defense in Norway spruce (Picea abies): Methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol. Biol. 51:119–133.Google Scholar
  30. Fäldt, J., Sjödin, K., Persson, M., Valterova, I., and Borg-Karlson, A. K. 2001. Correlations between selected monoterpene hydrocarbons in the xylem of six Pinus (Pinaceae) species. Chemoecology 11:97–106.Google Scholar
  31. Franceschi, V. R., Krekling, T., and Chrisitansen, E. 2002. Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylem. Am. J. Bot. 89:578-586Google Scholar
  32. Fugmann, B., Lang-Fugmann, S., and Steglich, W. 1997. Römpp-Lexikon Naturstoffe. Georg Thieme, Stuttgart, Germany.Google Scholar
  33. Gershenzon, J. and Croteau, R. 1991. Terpenoids, pp. 165-219, in G. A. Rosenthal and M. R. Berenbaum (Eds.). Herbivores. Their Interactions with Secondary Plant Metabolites, Vol. 1. The Chemical Participants, Academic Press, New York.Google Scholar
  34. Gijzen, M., Lewinsohn, E., Savage, T. J., and Croteau, R. B. 1993. Conifer Monoterpenes, pp. 8-22, in R., Teranishi, R. G., Buttery, and H. Sugisawa (Eds.). Bioactive Volatile Compounds from Plants. ACS Symposium Series 525, Washington, DC.Google Scholar
  35. Gols, R., Posthumus, M. A., and Dicke, M. 1999. Jasmonic acid induces the production of gerbera volatiles that attract the biological control agent Phytoseiulus persimilis. Entomol. Exp. Appl. 93:77–86.Google Scholar
  36. Hilker, M., Kobs, C., Varama, M., and Schrank, K., 2002a. Insect egg deposition induces Pinus to attract egg parasitoids. J. Exp. Biol. 205:455–461.Google Scholar
  37. Hilker, M., Rohfritsch, O., and Meiners, T., 2002b. The plant's response towards insect egg deposition, pp. 205-234, in M. Hilker and T. Meiners (Eds.). Chemoecology of Insect Eggs and Egg Deposition. Blackwell, Berlin.Google Scholar
  38. Hilker, M. and Meiners, T. 2002. Induction of plant responses towards oviposition and feeding of herbivorous arthropods: A comparison. Entomol. Exp. Appl. 104:181–192.Google Scholar
  39. Honkanen, T., Haukioja, E., and Kitunen, V. 1999. Responses of Pinus sylvestris branches to simulated herbivory are modified by tree sink/source dynamics and by external resources. Funct. Ecol. 13:126–140.Google Scholar
  40. Hopke, J., Donath, J., Blechert, S., and Boland, W. 1994. Herbivore-induced volatiles: The emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a β-glucosidase and jasmonic acid. FEBS Lett. 352:146–150.Google Scholar
  41. Joulain, D. and König, W. A. 1998. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. E.-B. Verlag, Hamburg, Germany.Google Scholar
  42. Karban, R. and Baldwin, I. T. 1997. Induced Responses to Herbivory. The University Press of Chicago, Chicago, Illinois.Google Scholar
  43. Kaukinen, K. H., Tranbarger, T. J., and Misra, S. 1996. Post germination induced and hormonally dependent expression of low molecular weight heat shock protein genes in Douglas fir. Plant Mol. Biol. 30:1115–1128.Google Scholar
  44. Kessler, A. and Baldwin, I. T. 2002. Plant responses to insect herbivory: The emerging molecular analysis. Annu. Rev. Plant Biol. 53:299–328.Google Scholar
  45. Koch, T., Krumm, T., Jung, V., Engelberth, J., and Boland, W. 1999. Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid-signaling pathway. Plant Physiol. 121:153–162.Google Scholar
  46. König, W. A., Krüger, A., Icheln, D., and Runge, T. 1992. Enantiomeric composition of the chiral constituents in essential oils. J. High Resol. Chromatogr. 15:184–189.Google Scholar
  47. Langenheim, J. H. 1994. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 20:1223–1280.Google Scholar
  48. Latta, R. G., Linhart, Y. B., Lundquist, L., and Snyder, M. A. 2000. Patterns of monoterpene variation within individual trees in ponderosa pine. J. Chem. Ecol. 26:1341–1357.Google Scholar
  49. Litvak, M. E. and Monson, R. K. 1998. Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia 114:531–540.Google Scholar
  50. Lombardero, M. J., Ayres, M. P., Lorio, P. L., Jr., and Ruel, J. J. 2000. Environmental effects on constitutive and inducible resin defences in Pinus taeda. Ecol. Lett. 3:329–339.Google Scholar
  51. Manninen, A. M., Tarhanen, S., Vuorinen, M., and Kainulainen, P. 2002. Comparing the variation of needle and wood terpenoids in scots pine provenances. J. Chem. Ecol. 28:211–228.Google Scholar
  52. Martin, D., Tholl, D., Gershenzon, J., and bohlmann, J. 2002. Methyl jasmonate induces traumatic resin ducts, terpenoid resins biosynthesis, and terpenoid accumulation in developing xylem of Norway Spruce stems. Plant Physiol. 129:1003–1018.Google Scholar
  53. McAuslane, H. J. and Alborn, H. T. 1998. Systemic induction of allelochemicals in glanded and glandless isogenic cotton by Spodoptera exigua feeding. J. Chem. Ecol. 24:399–416.Google Scholar
  54. Meiners, T. and Hilker, M. 1997. Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaluruca luteola (Coleoptera: Chrysomelidae). Oecologia 112:87–93.Google Scholar
  55. Meiners, T. and Hilker, M. 2000. Induction of plant synomones by oviposition of a phytophagous insect. J. Chem. Ecol. 26:221–232.Google Scholar
  56. Micha, S. G. and Wyss, U. 1996. Aphid alarm pheromone (E)-β-farnesene: A host findung kairomone for the aphid primary parasitoid Aphidius uzbekistanicus (Hymenoptera: Aphidiinae). Chemoecology 7:132–139.Google Scholar
  57. Moore, G. E. and Clark, E. W. 1968. Suppressing microorganisms and maintaining turgidity in coniferous foliage used to rear insects in the laboratory. J. Econ. Entomol. 61:1030–1031.Google Scholar
  58. Nault, L. R., Edwards, L. J., and Styer, W. E. 1973. Aphid alarm pheromones: Secretion and reception. Environ. Entomol. 2:101–105.Google Scholar
  59. Nebeker, T. E., Schmitz, R. F., and Tisdale, R. A. 1995. Comparison of oleoresin flow in relation to wound size, growth rates, and disease status of lodgepole pine. Can. J. Bot. 73:370–375.Google Scholar
  60. Oven, P. and Torelli, N. 1999. Response of the cambial zone in conifers to wounding. Phyton 39:133–137.Google Scholar
  61. Ozawa, R., Arimura, G., Takabayashi, J., Shimoda, T., and Nishioka, T. 2000. Involvement of jasmonate-and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol. 41:391–398.Google Scholar
  62. Paré, P. W., Lewis, W. J., and Tumlinson, J. H. 1999. Induced plant volatiles: Biochemistry and effects on parasitoids, pp. 167-180, in A. A., Agrawal, S., Tuzun, and E. Bent (Eds.). Induced Plant Defenses Against Pathogenes and Herbivores. APS Press, St. Paul, Minnesota.Google Scholar
  63. Paré, P. W. and Tumlinson, J. H. 1997. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114:1161–1167.Google Scholar
  64. Petrakis, P. V., Tsitsimpikou, C., Tzakou, O., Couladis, M., Vagias, C., and Roussis, V. 2001. Needle volatiles from Pinus species growing in Greece. Flavour Fragr. J. 16:249–252.Google Scholar
  65. Phillips, M. A., Savage, T. J., and Croteau, R. 1999. Monoterpene synthases of loblolly pine (Pinus taeda) produce pinene isomers and enantiomers. Arch. Biochem. Biophys. 372:197–204.Google Scholar
  66. Popp, M. P., Johnson, J. D., and Lesney, M. S. 1995. Characterization of the induced response of slash pine to inoculation with bark beetle vectored fungus. Tree Physiol. 15:619–623.Google Scholar
  67. Price, P. W. 1986. Ecological aspects of host plant resistance and biological control: Interactions among three trophic levels, pp. 11-30, in D. J. Boethel and R. D. Eikenbary (Eds.). Interactions of Plant Resistance and Parasitoids and Predators of Insects. Ellis Hoerwood, Chichester, England.Google Scholar
  68. Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., and Weis, A. E. 1980. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Annu. Rev. Ecol. Syst. 11:41–65.Google Scholar
  69. Raffa, K. F. and Smalley, E. B. 1995. Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle–fungal complexes. Oecologia 102:285–295.Google Scholar
  70. Richard, S., Drevet, C., Jouanin, L., and Sequin, A. 1999. Isolation and characterization of a cDNA clone encoding a putative white spruce glycine-rich RNA binding protein. Gene 240:379–388.Google Scholar
  71. Richard, S., Lapointe, G., Rutledge, R. G., and Seguin, A. 2000. Induction of chalcone synthase in white spruce by wounding and jasmonate. Plant Cell Physiol. 41:982–987.Google Scholar
  72. Rodriguez-Saona, C., Crafts-Brandner, S. J., Paré, P. W., and Henneberry, T. J. 2001. Exogenous methyl jasmonate induces volatile emissions in cotton plants. J. Chem. Ecol. 27:679–695.Google Scholar
  73. Röse, U. S. R., Lewis, W. J., and Tumlinson, J. H. 1998. Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitic wasps. J. Chem. Ecol. 24:303–319.Google Scholar
  74. Sadof, C. S. and Grant, G. G. 1997. Monoterpene composition of Pinus sylvestris varieties resistant and susceptible to Dioryctria zimmermani. J. Chem. Ecol. 23:1917–1927.Google Scholar
  75. Schmelz, E. A., Alborn, H. T., and Tumlinson, J. H. 2001. The influence of intact-plant and excised-leaf bioassay designs on volicitin-and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Planta 214:171–179.Google Scholar
  76. Sembdner, G. and Parthier, B. 1993. The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:569–589.Google Scholar
  77. Sjödin, K., Persson, M., Borg-Karlson, A.-K., and Norin, T. 1996. Enantiomeric compositions of monoterpene hydrocarbons in different tissues of four individuals of Pinus sylvestris. Phytochemistry 41:439–445.Google Scholar
  78. Staswick, P. E. and Lehman, C. C. 1999. Jasmonic acid-signaled responses in plants, pp. 117-136, in A. A., Agrawal, S., Tuzun, and E. Bent (Eds.). Induced Plant Defenses Against Pathogens and Herbivores. APS Press, St. Paul, Minnesota.Google Scholar
  79. Steele, C. L., Katoh, S., Bohlmann, J., and Croteau, R. 1998. Regulation of oleoresinosis in grand fir (Abies grandis). Plant Physiol. 116:1497–1504.Google Scholar
  80. Stout, M. J. and Bostock R. M. 1999. Specificity of induced responses to arthropods and pathogens, pp. 183-211, in A. A., Agrawal, S., Tuzun, and E. Bent (Eds.). Induced Defenses Against Pathogens and Herbivores. APS Press, St. Paul, Minnesota.Google Scholar
  81. Takabayashi, J., Dicke, M., and Posthumus, M. A. 1994. Volatile herbivore-induced terpenoids in plant–mite interactions: Variation caused by biotic and abiotic factors. J. Chem. Ecol. 20:1329–1354.Google Scholar
  82. Takabayashi, J., Takahashi, S., Dicke, M., and Posthumus, M. A. 1995. Developmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants. J. Chem. Ecol. 21:273–287.Google Scholar
  83. Teuscher, E. and Lindequist, U. 1994. Biogene Gifte. Gustav Fischer, Stuttgart, Germany.Google Scholar
  84. Thaler, J. S. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–688.Google Scholar
  85. Tomlin, E. S., Alfaro, R. I., Borden, J. H., and He, F. 1998. Histological response of resistant and susceptible white spruce to simulated white pine weevil damage. Tree Physiol. 18:21–28.Google Scholar
  86. Trapp, S. and Croteau, R. 2001. Defensive resin biosynthesis in conifers. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:689–724.Google Scholar
  87. Turlings, T. C. J., McCall, P. J., Alborn, H. T., and Tumlinson, J. H. 1993. An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J. Chem. Ecol. 19:411–425.Google Scholar
  88. Turlings, T. C. J., Tumlinson, J. H., Heath, R. R., Proveaux, A. T., and Doolittle, R. E. 1991. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J. Chem. Ecol. 17:2235–2251.Google Scholar
  89. Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253.Google Scholar
  90. van den Dool, J. and Kratz, P. D. 1963. A generalization of the retention index system including linear programmed gas–liquid partition chromatography. J. Chromatogr. 11:463.Google Scholar
  91. van Dort, H. M., Jagers, P. P., ter Heide, R., and van der Weerdt, A. J. A. 1993. Narcissus trevithian and Narcissus geranium: Analysis and synthesis of compounds. J. Agric. Food Chem. 41:2063–2075.Google Scholar
  92. Walling, L. L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19:195–216.Google Scholar
  93. Watt, A. D., Leather, S. R., and Forrest, G. I. 1991. The effect of previous defoliation of pole-stage lodgepole pine on plant chemistry, and on the growth and survival of pine beauty moth (Panolis flammea) larvae. Oecologia 86:31–35.Google Scholar
  94. Wegener, R., Schulz, S., Meiners, T., Hadwich, K., and Hilker, M. 2001. Analysis of volatiles induced by oviposition of elm leaf beetle Xanthogaleruca luteola on Ulmus minor. J. Chem. Ecol. 27:499–515.Google Scholar
  95. Weissbecker, B., van Loon, J. J. A., Posthumus, M. A., Bouwmeester, H. J., and Dicke, M. 2000. Identification of volatile potato sesquiterpenoids and their olfactory detection by the two-spotted stinkbug Perillus bioculatus. J. Chem. Ecol. 26:1433–1445.Google Scholar
  96. Zhu, J., Cossé, A. A., Obrycki, J. J., Boo, K. S., and Baker, T. C. 1999. Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea, to semiochemicals released from their prey and host plant: Electroantennogram and behavioral responses. J. Chem. Ecol. 25:1163–1177.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Roland Mumm
    • 1
  • Kai Schrank
    • 1
  • Robert Wegener
    • 2
  • Stefan Schulz
    • 2
  • Monika Hilker
    • 1
  1. 1.Institute of BiologyFreie Universität BerlinBerlinGermany
  2. 2.Institute of Organic ChemistryTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations