Journal of Applied Phycology

, Volume 15, Issue 2–3, pp 171–176 | Cite as

Extracellular degradation of phenol by the cyanobacterium Synechococcus PCC 7002

  • M. Wurster
  • S. Mundt
  • E. Hammer
  • F. Schauer
  • U. Lindequist


Investigations of the unicellular marine cyanobacterium Synechococcus PCC 7002 revealed its ability to metabolize phenol under non-photosynthetic conditions up to 100 mg L−1. Under continuous light, photoautotrophic growth was reduced only slightly in the presence of this phenol concentration, but no transformation was observed. However neither under photoautotrophic nor heterotrophic conditions were the cells able to use phenol for growth. During the degradation of phenol in the dark cis,cis-muconic acid was produced as the major product, which was identified by gas chromatography/mass spectrometry. This result was confirmed by an identical absorption spectrum and an identical retention time in high performance liquid chromatographic analysis with authentic muconic acid as standard. This provides the first record for an ortho-fission of a phenolic substance by cyanobacteria. Further investigations of the breakdown mechanism of phenol have shown that the transformation is an extracellular process inhibited by heat, proteases and metal ions and is probably catalyzed by a protein.

Aromatic ring-fission Biodegradation Cyanobacteria Extracellular Muconic acid Phenol Synechococcus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bayly R.C. and Barbour G. 1984. The degradation of aromatic compounds by the meta-and gentisate pathways. Biochemistry and regulation. In: Gibson D.T. (ed.), Microbial Degradation of Organic Compounds. Marcel Dekker, New York Basel, pp. 253-294.Google Scholar
  2. Cerniglia C.E. 1981. Aromatic hydrocarbons: Metabolism by bacteria, fungi and algae. In: Hodgson E., Bend J.R. and Philpot R.M. (eds), Reviews in Biochemical Toxicology. Vol. 3. Elsevier/ North Holland, New York, pp. 321-361.Google Scholar
  3. Cerniglia C.E., Freeman J.P. and Althaus J.R. 1984. Biotransformation and toxicity of 1-and 2-methylnaphthalene and their derivatives in cyanobacteria. In: Liu D. and Dutka B.J. (eds), Toxicity Screening Procedures using Bacterial Systems. Marcel Dekker Inc., New York, pp. 381-394.Google Scholar
  4. Cerniglia C.E., Freeman J.P., Althaus J.R. and Van Baalen C. 1983. Metabolism and toxicity of 1-and 2-methylnaphthalene and their derivatives in cyanobacteria. Arch. Microbiol. 136: 177- 183.Google Scholar
  5. Cerniglia C.E., Freeman J.P. and Van Baalen C. 1981. Biotransformation and toxicity of aniline and aniline derivatives in cyanobacteria. Arch. Microbiol. 130: 272-275.Google Scholar
  6. Cerniglia C.E., Gibson D.T. and Van Baalen C. 1980. Oxidation of naphthalene by cyanobacteria and microalgae. J. gen. Microbiol. 116: 495-500.Google Scholar
  7. Cerniglia C.E., Sutherland J.B. and Crow S.A. 1992. Fungal metabolism of aromatic hydrocarbons. In: Winkelmann G. (ed.), Microbial Degradation of Natural Products. VCH, Weinheim, pp. 193-217.Google Scholar
  8. Chapman P.J. 1972. An outline of reaction sequences used for the bacterial degradation of phenolic compounds. In: Degradation of Synthetic Organic Molecules in the Biosphere. Nat. Acad. Sci., Washington, DC, USA, pp. 17-55.Google Scholar
  9. De Boer T.D. and Backer H. 1956. Diazomethane. In: Leonard N.J. (ed.), Organic Synthesis. Vol. 36. John Wiley & Sons, New York, pp. 14-16.Google Scholar
  10. Ellis B.E. 1977. Degradation of phenolic compounds by fresh-water algae. Plant. Sci. Letts 8: 213-216.Google Scholar
  11. Evans W.C. and Fuchs G. 1988. Anaerobic degradation of aromatic compounds. Ann. Rev. Microbiol. 42: 289-317.Google Scholar
  12. Gibson D.T. and Subramanian V. 1984. Microbial degradation of aromatic hydrocarbons. In: Gibson D.T. (ed.), Microbial Degradation of Organic Compounds. Marcel Dekker, Inc., New York Basel, pp. 181-252.Google Scholar
  13. Hofmann K.H. and Schauer F. 1988. Utilization of phenol by hydrocarbon assimilating yeasts. Antonie van Leeuwenhoek 54: 179-188.Google Scholar
  14. Kennes C. and Lema J.M. 1994. Simultaneous biodegradation of p-cresol and phenol by the basidiomycete Phanerochaete chrysosporium. J. Ind. Microbiol. 13: 311-314.Google Scholar
  15. Khalil Z. and Mostafa I.Y. 1987. Interaction of pesticides with fresh water algae. Isotope and Rad. Res. 19: 35-41.Google Scholar
  16. Koch R. 1989. Umweltchemikalien. VCH, Weinheim.Google Scholar
  17. Megharaj M., Madhavi D.R., Sreenivasulu C., Umamaheswari A. and Venkateswarlu K. 1994. Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull. environ. Contam. Toxicol. 53: 292-297.Google Scholar
  18. Mostafa I.Y., Shabana E.F., Khalil Z. and Mostafa F.I.Y. 1991. The metabolic fate of 14C-Parathion by some fresh water phytoplankton and its possible effects on the algal metabolism. J. Environ. Sci. Health B 26: 499-512.Google Scholar
  19. Narro M.L., Cerniglia C.E., Van Baalen C. and Gibson D.T. 1992. Evidence for an NIH shift in oxidation of naphthalene by the marine cyanobacterium Oscillatoria sp. strain JCM. Appl. Environ. Microbiol. 58: 1360-1363.Google Scholar
  20. Pharmacopoea Europaea 2000. Nachtrag, Prüfung auf Sterilität. Deutscher Apotheker Verlag Stuttgart, Govi-Verlag-Pharmazeutischer Verlag GmbH Eschborn, 51-56.Google Scholar
  21. Polnisch E., Kneifel H., Franzke H. and Hofmann K.H. 1992. Degradation and dehalogenation of monochlorophenols by the phenol-assimilating yeast Candida maltosa. Biodegradation 2: 193-199.Google Scholar
  22. Radwan S.S. and Al-Hasan H. 2000. Oil pollution and cyanobacteria. In: Whitton B.A. and Potts M. (eds), The Ecology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, London, Boston, pp. 307-316.Google Scholar
  23. Rippka R., Deruelles J., Waterbury J.B., Herdman M. and Stanier R.Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61.Google Scholar
  24. Shashirekha S., Uma L. and Subramanian G. 1997. Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU 30501. J. Ind. Microbiol. Biotechnol. 19: 130-133.Google Scholar
  25. Smith A.J. 1983. Modes of cyanobacterial carbon metabolism. Ann. Microbiol. (Inst. Pasteur) 134B: 93-113.Google Scholar
  26. Smith M.R. 1994. The physiology of aromatic hydrocarbon degrading bacteria. In: Ratlege C. (ed.), Biochemistry of Microbial Degradation. Kluwer Academic Publishers, Dordrecht, London, Boston, pp. 347-378.Google Scholar
  27. Van Baalen C. 1962. Studies on marine blue-green algae. Bot. mar. 4: 129-139.Google Scholar
  28. Waterbury J.B. and Stanier R.Y. 1981. Isolation and growth of cyanobacteria from marine and hypersaline environments. In: Starr M.P., Stolp H., Trüper H.G., Balows A. and Schlegel H.G. (eds), The Prokaryotes. Vol. 1. Springer, Berlin, pp. 221-223.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M. Wurster
    • 1
  • S. Mundt
    • 1
  • E. Hammer
    • 2
  • F. Schauer
    • 2
  • U. Lindequist
    • 1
  1. 1.Institute of Pharmacy, Department of Pharmaceutical BiologyErnst-Moritz-Arndt-UniversityGreifswaldGermany
  2. 2.Institute of Microbiology and Molecular BiologyErnst-Moritz-Arndt-UniversityGreifswaldGermany

Personalised recommendations