Journal of Chemical Ecology

, Volume 29, Issue 5, pp 1167–1182 | Cite as

Systemic Effects of Heterobasidion annosum on Ferulic Acid Glucoside and Lignin of Presymptomatic Ponderosa Pine Phloem, and Potential Effects on Bark-Beetle-Associated Fungi

  • Pierluigi Bonello
  • Andrew J. Storer
  • Thomas R. Gordon
  • David L. Wood
  • Werner Heller

Abstract

Concentrations of soluble phenolics and lignin in the phloem of ponderosa pines inoculated with the pathogen Heterobasidion annosum were assessed over a period of 2 years in a 35-year-old plantation in northern California, USA. The major effect of the pathogen on phloem-soluble phenolics consisted of a significant accumulation of ferulicacid glucoside: 503 ± 27 μg/g fresh weight (FW), compared with 366 ± 26 μg/g FW for mock-treated and 386 ± 27 μg/g FW for control trees. Lignin content was negatively correlated with ferulic acid glucoside concentration, and there was an indication of lignin reduction in the cell walls of inoculated trees. Lignin had a negative effect on the in vitro growth of two common bark beetle fungal associates, Ceratocystiopsis brevicomi and Ophiostoma minus. For this reason it, is hypothesized that lower lignification may facilitate the growth of beetle-associated fungi, resulting in greater susceptibility of the presymptomatic host to bark beetle colonization.

Pine root rot induction systemic accumulation phenolics lignin depletion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aist, J. R. 1983. Structural responses as resistance mechanisms, pp. 33-70, in J. A. Bailey and B. J. Deverall (Eds.). The Dynamics of Host Defence. Academic Press, New York.Google Scholar
  2. Barras, S. J. 1973. Reduction of progeny and development in the southern pine beetle following removal of symbiotic fungi. Can. Entomol. 105:1295–1299.Google Scholar
  3. Blodgett, J. T. and Bonello, P. 2001. Systemic induction of ferulic acid and other phenolic compounds in Pinus nigra inoculated with Sphaeropsis sapinea. Phytopathology 91:S9.Google Scholar
  4. Bonello, P., Heller, W., and Sandermann, H., Jr. 1993. Ozone effects on root-disease susceptibility and defence responses in mycorrhizal and non-mycorrhizal seedlings of Scots pine (Pinus sylvestris L.). N. Phytol. 124:653–663.Google Scholar
  5. Bonello, P., Gordon, T. R., and Storer, A. J. 2001a. Systemic induced resistance in Monterey pine. For. Pathol. 31:99–106.Google Scholar
  6. Bonello, P., Mcnee, W. R., Storer, A. J., Wood, D. L., and Gordon, T. R. 2001b. The role of olfactory stimuli in the location of weakened hosts by twig-infesting Pityophthorus spp. Ecol. Entomol. 26:8–15.Google Scholar
  7. Brattli, J. G., Andersen, J., and Nilssen, A. C. 1998. Primary attraction and host tree selection in deciduous and conifer living Coleoptera: Scolytidae, Curculionidae, Cerambycidae and Lymexylidae. J. App. Entomol. 122:345–352.Google Scholar
  8. Bridges, J. R. 1983. Mycangial fungi of Dendroctonus frontalis (Coleoptera: Scolytidae) and their relationship to beetle population trends. Environ. Entomol. 12:858–861.Google Scholar
  9. Bruce, R. and West, C. 1989. Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol. 91:889–897.Google Scholar
  10. Christiansen, E., Krokene, P., Berryman, A. A., Franceschi, V. R., Krekling, T., Lieutier, F., Lonneborg, A., and Solheim, H. 1999. Mechanical injury and fungal infection induce acquired resistance in Norway spruce. Tree Physiol. 19:399-403Google Scholar
  11. Cobb, F. W., Jr., Parmeter, J. R., Jr., Wood, D. L., and Stark, R. W. 1974. Root pathogens as agents predisposing ponderosa pine and white fir to bark beetles. Proceedings Fourth International Conference on Fomes annosus, Athens, Georgia.Google Scholar
  12. Elkington, J. S. and Wood, D. L. 1980. Feeding and boring behavior of Ips paraconfusus on the bark of host and non-host tree species. Can. Entomol. 112:797–809.Google Scholar
  13. Franceschi, V. R., Krokene, P., Krekling, T., and Christiansen, E. 2000. Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or bark-beetle attack in Norway spruce (Pinaceae). Am. J. Bot. 87:314–326.Google Scholar
  14. Garbelotto, M., Slaughter, G., Popenuck, T., Cobb, F. W., Jr. and Bruns, T. D. 1997. Secondary spread of Heterobasidion annosum in white fir root-disease centers. Can. J. For. Res. 27:766–773.Google Scholar
  15. Goheen, D. J. and Cobb, F. W. J. 1980. Infestation of Ceratocystis wageneri-infected ponderosa pine by bark beetles (Coleoptera: Scolytidae) in the central Sierra Nevada. Can. Entomol. 112:725–730.Google Scholar
  16. Goheen, D. J. and Hansen, E. M. 1993. Effects of pathogens and bark beetles on forests, pp. 175-196, in T. D. Schowalter and G. M. Filip (Eds.). Beetle–Pathogen Interactions in Conifer Forests. Academic Press, London.Google Scholar
  17. Hammerschmidt, R. and Kuc, J. 1982. Lignification as a mechanism for induced systemic resistance in cucumber. Physiol. Plant Pathol. 20:61–71.Google Scholar
  18. Harrington, T. C. 1993. Biology and taxonomy of fungi associated with bark beetles, pp. 37-58, in T. D. Schowalter and G. M. Filip (Eds.). Beetle–Pathogen Interactions in Conifer Forests. Academic Press, London.Google Scholar
  19. Hart, J. H. 1981. Role of phytostilbenes in decay and disease resistance. Annu. Rev. Phytopathol. 19:437–458.Google Scholar
  20. Heil, M. 1999. Systemic acquired resistance: Available information and open ecological questions. J. Ecol. 87:341–346.Google Scholar
  21. Kemp, M. S. and Burden, R. S. 1986. Phytoalexins and stress metabolites in the sapwood of trees. Phytochemistry 25:1261–1269.Google Scholar
  22. Klepzig, K. D., Kruger, E. L., Smalley, E. B., and Raffa, K. F. 1995a. Effects of biotic and abiotic stress on induced accumulation of terpenes and phenolics in red pines inoculated with bark beetle-vectored fungus. J. Chem. Ecol. 21:601–626.Google Scholar
  23. Klepzig, K. D., Smalley, E. B., and Raffa, K. F. 1995b. Dendroctonus valens and Hylastes porculus (Coleoptera: Scolytidae): Vectors of pathogenic fungi (Ophiostomatales) associated with red pine decline disease. Great Lakes Entomol. 28:81–87.Google Scholar
  24. Klepzig, K. D., Smalley, E. B., and Raffa, K. F. 1996. Combined chemical defenses against an insect-fungal complex. J. Chem. Ecol. 22:1367–1388.Google Scholar
  25. Krokene, P., Christiansen, E., Solheim, H., Franceschi, V. R., and Berryman, A. A. 1999. Induced resistance to pathogenic fungi in Norway spruce. Plant Physiol. 121:565–569.Google Scholar
  26. Krokene, P. and Solheim, H. 1998. Pathogenicity of four blue-stain fungi associated with aggressive and nonaggressive bark beetles. Phytopathology 88:39–44.Google Scholar
  27. Lieutier, F., Sauvard, D., Brignolas, F., Picron, V., Yart, A., Bastien, C., and Jay-Allemand, C. 1996. Changes in phenolic metabolites of Scots-pine phloem induced by Ophiostoma brunneo-ciliatum, a bark-beetle-associated fungus. Eur. J. For. Pathol. 26:145–158.Google Scholar
  28. Livingston, W. H., Mangini, A. C., Kinzer, H. G., and Mielke, M. E. 1983. Association of root diseases and bark beetles (Coleoptera: Scolytidae) with Pinus ponderosa in New Mexico. Plant Dis. 67:674–676.Google Scholar
  29. Lorio, P. L. J. 1993. Environmental stress and whole-tree physiology, pp. 81-101, in T. D. Schowalter and G. M. Filip (Eds.). Beetle–Pathogen Interactions in Conifer Forests. Academic Press, London.Google Scholar
  30. Macias-Samano, J. E., Borden, J. H., Gries, R., Pierce, H. D., Jr., Gries, G., and King, G. G. S. 1998. Primary attraction of the fir engraver, Scolytus ventralis. J. Chem. Ecol. 24:1049–1075.Google Scholar
  31. Mcnee, W. R. 2000. Bark beetle feeding behaviors and their interaction with forest pathogens. Ph.D. Dissertation. University of California, Berkeley, California, 93pp.Google Scholar
  32. Mcnee, W. R., Bonello, P., Wood, D. L., Storer, A. J., and Gordon, T. R. 2003. Feeding response of Ips paraconfusus to phloem and phloem metabolites of Heterobasidion annosum-inoculated ponderosa pine, Pinus ponderosa. J. Chem. Ecol. 29: 1167–1182.Google Scholar
  33. Metraux, J. P. 2001. Systemic acquired resistance and salicylic acid: Current state of knowledge. Eur. J. Plant Pathol. 107:13–18.Google Scholar
  34. Moeck, H., Wood, D. L., and Lindahl, K. Q. 1981. Host selection behavior of bark beetles (Coleoptera: Scolytidae) attacking Pinus ponderosa, with special emphasis on the western pine beetle, Dendroctonus brevicomis. J. Chem. Ecol. 7:49–83.Google Scholar
  35. Muenzenberger, B., Kottke, I., and Oberwinkler, F. 1995. Reduction of phenolics in mycorrhizas of Larix decidua Mill. Tree Physiol. 15:191–196.Google Scholar
  36. Nebeker, T. E., Schmitz, R. F., Tisdale, R. A., and Hobson, K. R. 1995. Chemical and nutritional status of dwarf mistletoe, Armillaria root rot, and comandra blister rust infected trees which may influence tree susceptibility to bark beetle attack. Can. J. Bot. 73:360–369.Google Scholar
  37. Owen, D. R., Lindahl, K. Q., Jr., Wood, D. L., and Parmeter, J. R., Jr. 1987. Pathogenicity of fungi isolated from Dendroctonus valens, D. brevicomis, and D. ponderosae to ponderosa pine seedlings. Phytopathology 77:631–636.Google Scholar
  38. Paine, T. D. and Baker, F. A. 1993. Abiotic and biotic predisposition, pp. 61-79, in T. D. Schowalter and G. M. Filip (Eds.). Beetle–Pathogen Interactions in Conifer Forests. Academic Press, London.Google Scholar
  39. Paine, T. D., Raffa, K. F., and Harrington, T. C. 1997. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu. Rev. Entomol. 42:179–206.Google Scholar
  40. Parmeter, J. R., Jr., Slaughter, G. W., Chen, M., Wood, D. L., and Stubbs, H. A. 1989. Single and mixed inoculations of ponderosa pine with fungal associates of Dendroctonus spp. Phytopathology 79:768–772.Google Scholar
  41. Pearce, R. B. 1996a. Effects of exposure to high ozone concentrations on stilbenes in Sitka spruce (Picea sitchensis (Bong.) Carr.) bark and on its lignification response to infection with Heterobasidion annosum. Physiol. Mol. Plant Pathol. 48:117–129.Google Scholar
  42. Pearce, R. B. 1996b. Antimicrobial defences in the wood of living trees. New Phytol. 132:203–233.Google Scholar
  43. Pearl, I. A. and Beyer, D. D. 1951. Reactions of vanillin and its derived compounds. XI. Cinnamic acids derived from vanillin and its related compounds. J. Org. Chem. 16:216–220.Google Scholar
  44. Prior, C. 1976. Resistance by Corsican pine to attack by Heterobasidion annosum. Ann. Bot. 40:261–279.Google Scholar
  45. Raffa, K. F., Phillips, T. W., and Salom, S. M. 1993. Strategies and mechanisms of host colonization by bark beetles, pp. 103-128, in T. D. Schowalter and G. M. Filip (Eds.). Beetle–Pathogen Interactions in Conifer Forests. Academic Press, London.Google Scholar
  46. Ride, J. P. and Barber, M. S. 1987. The effects of various treatments on induced lignification and the resistance of wheat to fungi. Physiol. Mol. Plant Pathol. 31:349–360.Google Scholar
  47. Rosemann, D., Heller, W., and Sandermann, H., Jr. 1991. Biochemical plant responses to ozone, II: Induction of stilbene biosynthesis in Scots pine Pinus sylvestris L. seedlings. Plant Physiol. 97:1280–1286.Google Scholar
  48. Schuster, B., Winter, M., and Herrmann, K. 1986. 4-O-β-D-Glucosides of hydroxybenzoic and hydroxycinnamic acids. Their synthesis and determination in berry fruit and vegetable. Z. Naturforsch. [C] 41:511–520.Google Scholar
  49. Six, D. L. and Paine, T. D. 1998. Effects of mycangial fungi and host tree species on progeny survival and emergence of Dendroctonus ponderosae (Coleoptera: Scolytidae). Environ. Entomol. 27:1393–1401.Google Scholar
  50. Sokal, R. R. and Rohlf, F. J. 1981. Biometry, 2nd ed. W. H. Freeman and Co., New York, 859 pp.Google Scholar
  51. Stark, R. W., Miller, P. R., Cobb, F. W., Jr., Wood, D. L., and Parmeter, J. R., Jr. 1968. Photochemical oxidant injury and bark beetle (Coleoptera: Scolytidae) infestation of ponderosa pine, I: Incidence of bark beetle infestation in injured trees. Hilgardia 39:121–126.Google Scholar
  52. Storer, A. and Speight, M. R. 1996. Relationships between Dendroctonus micans KUG. (Coleoptera: Scolytidae) survival and development and biochemical changes in Norway spruce, Picea abies (L.) Karst., phloem caused by mechanical wounding. J. Chem. Ecol. 22:559–573.Google Scholar
  53. Strack, D. 1997. Phenolic metabolism, pp. 387-416, in P. M. Dey and J. B. Harborne (Eds.). Plant Biochemistry. Academic Press, San Diego, California.Google Scholar
  54. Strack, D., Heilemann, J., and Klinkott, E. S. 1988. Cell wall-bound phenolics from Norway spruce (Picea abies) needles. Zeit. Naturfor. 43:37–43.Google Scholar
  55. Strobel, N. E. and Sinclair, W. A. 1988. Laccaria-bicolor enhances phenolic infusion of cortical cell walls of Douglas-fir primary roots and inhibits penetration by Fusarium-oxysporum. Phytopathology 78:1524.Google Scholar
  56. Sylvia, D. M. and Sinclair, W. A. 1983. Phenolic compounds and resistance to fungal pathogens induced in primary roots of Douglas-fir seedlings by the ectomycorrhizal fungus Laccaria laccata. Phytopathology 73:390–397.Google Scholar
  57. Turunen, M., Heller, W., Stich, S., Sandermann, H., Sutinen, M.-L., and Norokorpi, Y. 1999. The effects of UV exclusion on the soluble phenolics of young Scots pine seedlings in the subarctic. Environ. Pollut. 106:219–228.Google Scholar
  58. Vance, C. P., Kirk, T. K., and Sherwood, R. T. 1980. Lignification as a mechanism of disease resistance. Annu. Rev. Phytopathol. 18:259–288.Google Scholar
  59. Wainhouse, D., Cross, D. J., and Howell, R. S. 1990. The role of lignin as a defense against the spruce bark beetle Dendroctonus micans: Effect on larvae and adults. Oecologia 85:257–265.Google Scholar
  60. Wargo, P. M. and Harrington, T. C. 1991. Host stress and susceptibility, pp. 88-101, in C. G. Shaw and G. A. Kile (Eds.). Armillaria Root Disease. United States Department of Agriculture, Forest Service, Agriculture Handbook 691, 233 pp.Google Scholar
  61. Weiss, M., Mikolajewski, S., Peipp, H., Schmitt, U., Schmidt, J., Wray, V., and Strack, D. 1997. Tissue-specific and development-dependent accumulation of phenylpropanoids in larch mycorrhizas. Plant Physiol. 114:15–27.Google Scholar
  62. Whitney, H. S. 1982. Relationships between bark beetles and symbiotic organisms, pp. 183-211, in J. B. Mitton and K. B. Sturgeon (Eds.). Bark Beetles of North American Conifers. University of Texas Press, Austin, Texas.Google Scholar
  63. Wood, D. L. 1982. The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annu. Rev. Entomol. 27:411–446.Google Scholar
  64. Wood, D. L., Akers, R. P., Owen, D. R., and Parmeter, J. R., Jr. 1986. The behaviour of bark beetles colonizing ponderosa pine, pp. 91-103, in B. E. Juniper and T. R. E. Southwood (Eds.). Insects and the Plant Surface. Edward Arnold, London.Google Scholar
  65. Woodward, S. 1992. Responses of gymnosperm bark tissues to fungal infections, pp. 62-75, in R. A. Blanchette and A. R. Biggs (Eds.). Defense Mechanisms of Woody Plants Against Fungi. Springer-Verlag, Berlin.Google Scholar
  66. Woodward, S. and Pearce, R. B. 1988. The role of stilbenes in resistance of Sitka spruce (Picea sitchensis (Bong.) Carr.) to entry of fungal pathogens. Physiol. Mol. Plant Pathol. 33:127–149.Google Scholar
  67. Woodward, S., Stenlid, J., Karjalainen, R., and Huettermann, A. 1998. Heterobasidion annosum—Biology, Ecology, Impact and Control. CAB International, Oxford, United Kingdom.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Pierluigi Bonello
    • 1
  • Andrew J. Storer
    • 2
  • Thomas R. Gordon
    • 1
  • David L. Wood
    • 2
  • Werner Heller
    • 3
  1. 1.Department of Plant PathologyUniversity of CaliforniaDavisUSA
  2. 2.Division of Insect BiologyUniversity of CaliforniaBerkeleyUSA
  3. 3.School of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonUSA

Personalised recommendations