Neuropsychology Review

, Volume 13, Issue 2, pp 79–92 | Cite as

Alzheimer' Disease as a Disconnection Syndrome?

  • X. Delbeuck
  • M. Van der Linden
  • F. Collette


This paper reviews the growing amount of evidence supporting the hypothesis that Alzheimer's disease includes a disconnection syndrome. This evidence came mainly from neuropathological, electrophysiological, and neuroimaging studies. Moreover, a few recent neuropsychological studies have also explored the effects of a disconnection between cerebral areas on cognitive functioning. Finally, and more generally, the contribution of this interpretation to the understanding of Alzheimer's disease cognitive deficits is considered.

Alzheimer's disease disconnection neuropsychology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arendt, T. (2001). Alzheimer's disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience 102: 723-765.PubMedGoogle Scholar
  2. Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T., and Hyman, B. T. (1992). Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 42: 631-639.PubMedGoogle Scholar
  3. Azari, N. P., Rapoport, S. I., Grady, C. L., Schapiro, M. B., Salerno, J. A., Gonzales-Aviles, A., et al. (1992). Patterns of interregional correlations of cerebral glucose metabolic rates in patients with dementia of the Alzheimer type. Neurodegeneration 1: 101-111.Google Scholar
  4. Baddeley, A. D. (1986). Working Memory, Oxford University Press, Oxford.Google Scholar
  5. Baddeley, A. D., Baddeley, H. A., Bucks, R. S., and Wilcock, G. K. (2001). Attentional control in Alzheimer's disease. Brain 124: 1492-1508.PubMedGoogle Scholar
  6. Baddeley, A. D., Logie, R., Bressi, S., Della Sala, S., and Spinnler, H. (1986). Dementia and working memory. Q. J. Exp. Psychol. 38: 603-618.Google Scholar
  7. Baddeley, A., Della Sala, S., Papagno, C., and Spinnler, H. (1997). Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion. Neuropsychology 11: 187-194.PubMedGoogle Scholar
  8. Baddeley, A. D., Bressi, S., Della Sala, S., Logie, R., and Spinnler, H. (1991). The decline of working memory in Alzheimer's disease: A longitudinal study. Brain 114: 2521-2542.PubMedGoogle Scholar
  9. Belleville, S., Rouleau, N., and Caza, N. (1998). Effects of normal aging on the manipulation of information in working memory. Mem. Cognit. 26: 572-583.PubMedGoogle Scholar
  10. Berendse, H. W., Verbundt, J. P. A., Scheltens, Ph., van Dijk, B. W., and Jonkman, E. J. (2000). Magnetoencephalography analysis of cortical activity in Alzheimer's disease: A pilot study. Clin. Neurophysiol. 11: 604-612.Google Scholar
  11. Besthorn, C., Förstl, H., Geiger-Kabisch, C., Sattel, H., Gasser, T., and Schreitter-Gasser, U. (1994). EEG coherence in Alzheimer disease. Electroencephalogr. Clin. Neurophysiol. 90: 242-245.PubMedGoogle Scholar
  12. Brickenkamp, R. (1966). Le test D2 d'attention concentrée, Editest, Paris.Google Scholar
  13. Buldyrev, S. V., Cruz, L., Gòmez-Isla, T., Gomez-Tortosa, E., Havlin, S., Le, R., et al. (2000). Description of microcolumnar ensembles in association cortex and their disruption in Alzheimer and Lewy body dementias. Proc. Natl. Acad. Sci. USA 97: 5039-5043.PubMedGoogle Scholar
  14. Burgess, P.W., and Shallice, T. (1996). Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia 34: 263-273.PubMedGoogle Scholar
  15. Cabeza, R., McIntosh, A. R., Tulving, E., Nyberg, L., and Grady, C. L. (1997). Age-related differences in effective neural connectivity during encoding and recall. Neuroreport 8: 3479-3483.PubMedGoogle Scholar
  16. Collette, F., Van der Linden, M., Bechet, S., and Salmon, E. (1999a). Phonological loop and central executive functioning in Alzheimer's disease. Neuropsychologia 37: 905-918.PubMedGoogle Scholar
  17. Collette, F., Van der Linden, M., and Salmon, E. (1999b). Executive Dysfunction in Alzheimer's Disease. Cortex 35: 57-72.PubMedGoogle Scholar
  18. Collette, F., Van der Linden, M., Juillerat, A. C., and Meulemans, T. (2003). A cognitive neuropsychological approach to Alzheimer's disease. In: Mulligan, R., Van der Linden, M., and Juillerat, A. C. (eds.), The Clinical Management of Early Alzheimer's Disease, Erlbaum, Mahwah, NJ.Google Scholar
  19. Collette, F., Van der Linden, M., Delrue, G., and Salmon, E. (2002). Frontal hypometabolism does not explain inhibitory dysfunction in Alzheimer's disease. Alzheimer Dis. Assoc. Disordering. 17: 228-238.Google Scholar
  20. Damasio, A. R., Van Hoesen, G. W., and Hyman, B. T. (1990). Reflections on the selectivity of neuropathological changes in Alzheimer's disease. In: Schwartz, M. N. (ed.), Modular Deficits in Alzheimer Type Dementia, MIT Press, Cambridge, pp. 83-100.Google Scholar
  21. Davis, H., Mast, T., Yoshie, N., and Zerlin, S. (1966). The slow response of the human cortex to auditory stimuli: recovery process. Electroencephalogr. Clin. Neurophysiol. 21: 105-113.PubMedGoogle Scholar
  22. Davis, H., Osterhammel, P. A., Wier, C. C., and Gjerdingen, D. B. (1972). Slow vertex potentials: interactions among auditory, tactile, electric and visual stimuli. Electroencephalogr. Clin. Neurophysiol. 33: 537-545.PubMedGoogle Scholar
  23. De Lacoste, M. C., and White, C. L. (1993). The role of cortical connectivity in Alzheimer's disease pathogenesis: A review and model system. Neurobiol. Aging 14: 1-16.PubMedGoogle Scholar
  24. Fabrigoule, C., Rouch, I., Taberly, A., Letenneur, L., Commenges, D., Mazaux, J. M., et al. (1998). Cognitive process in preclinical phase of dementia. Brain 121: 135-141.PubMedGoogle Scholar
  25. Finger, S. (1994). Origins of Neuroscience: A history of explorations into brain function, Oxford University Press, New York.Google Scholar
  26. Friston, K. J. (1999). Schizophrenia and the disconnection hypothesis. Acta Psychiatr. Scand. 99: 68-79.PubMedGoogle Scholar
  27. Frith, C. D., Friston, K. J., Herold, S., Sibersweig, D., Fletcher, P., Cahill, C., et al. (1995). Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task. Br. J. Psychiatry 167: 343-349.PubMedGoogle Scholar
  28. Fuster, J. M. (1993). Frontal lobes. Curr. Opin. Neurobiol. 3: 160-165.PubMedGoogle Scholar
  29. Geschwind, N. (1965). Disconnection syndromes in animals and man. Brain 88: 237-294.PubMedGoogle Scholar
  30. Golob, E. J., Miranda, G. G., Johnson, J. K., and Starr, A. (2001). Sensory cortical interactions in aging, mild cognitive impairement, and Alzheimer's disease. Neurobiol. Aging 22: 755-763.PubMedGoogle Scholar
  31. Gòmez-Isla, T., and Hyman, B. T. (1997). Connections and cognitive impairment in Alzheimer's disease. In: Hyman, B. T., Duyckaerts, C., and Christen, Y. (eds.), Connections, Cognition, and Alzheimer's Disease, Springer, Berlin, pp. 149-166.Google Scholar
  32. Gòmez-Isla, T., Price, J. L., McKeel, D.W., Morris, J. C., Growdon, J. H., and Hyman, B. T. (1996). Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. J. Neurosci. 16: 4491-4500.PubMedGoogle Scholar
  33. Gòmez-Isla, T., Hollister, R., West, H., Mui, S., Growdon, J., Petersen, R. C., et al. (1997). Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease. Ann. Neurol. 41: 17-24.PubMedGoogle Scholar
  34. Grady, C. L., Grimes, A. M., Patronas, N., Sunderland, T., Foster, N. L., and Rapoport, S. I. (1989). Divided attention, as measured by dichotic speech performance, in dementia of the Alzheimer type. Arch. Neurol. 46: 317-320.PubMedGoogle Scholar
  35. Grady, C. L., Furey, M. L., Pietrini, P., Horwitz, B., and Rapoport, S. I. (2001). Altered brain functional connectivity and impaired shortterm memory in Alzheimer's disease. Brain 124: 739-756.PubMedGoogle Scholar
  36. Greene, J. D. W., Hodges, J. R., and Baddeley, A. D. (1995). Autobiographical memory and executive functions in early dementia of Alzheimer type. Neuropsychologia 33: 1647-1670.PubMedGoogle Scholar
  37. Grimes, A. M., Grady, C. L., Foster, N.M., Sunderland, T., and Patronas, N. J. (1985). Central auditory function in Alzheimer's disease. Neurology 35: 352-358.PubMedGoogle Scholar
  38. Grober, E., and Buschke, H. (1987). Genuine memory deficits in dementia. Dev. Neuropsychol. 3: 13-36.Google Scholar
  39. Hampel, H., Teipel, S. J., Alexander, G. E., Horwitz, B., Teichberg, D., Schapiro, M. B., et al. (1998). Corpus callosum atrophy is a possible indicator of region-and cell type-specific neuronal degeneration in Alzheimer Disease. Arch. Neurol. 55: 193-198.PubMedGoogle Scholar
  40. Haxby, J. V., Duara, R., Grady, C. L., Rapoport, S. I., and Cutler, N. R. (1985). Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer's disease. J. Cereb. Blood Flow Metab. 5: 193-200.PubMedGoogle Scholar
  41. Horwitz, B., Duara, R., and Rapoport, S. I. (1986). Age differences in intercorrelations between regional cerebral metabolic rates for glucose. Ann. Neurol. 19: 60-67.PubMedGoogle Scholar
  42. Horwitz, B., Grady, C. L., Sclageter, N. L., Duara, R., and Rapoport, S. I. (1987). Intercorrelations of regional glucose metabolic rates in Alzheimer's disease. Brain Res. 407: 294-306.PubMedGoogle Scholar
  43. Jackson, J. H. (1874/1958). On the nature of the duality of the brain. In: Taylor, J. (ed.), Selected Writings of John Hughlings Jackson, Basic Books, New York, pp. 129-145.Google Scholar
  44. Janowski, J. S., Kaye, J. A., and Carper, R. A. (1996). Atrophy of the corpus callosum in Alzheimer's disease versus healthy aging. J. Am. Geriatr. Soc. 44: 798-803.PubMedGoogle Scholar
  45. Laflèche, G., and Albert, M. S. (1995). Executive function deficits in mild Alzheimer's disease. Neuropsychology 9: 313-320.Google Scholar
  46. Lakmache, Y., Lassonde, M., Gauthier, S., Frigon, J. Y., and Lepore, F. (1998). Interhemispheric disconnection syndrome in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 95: 9042-9046.PubMedGoogle Scholar
  47. Lekeu, F., Van der Linden, M., Chicherio, C., Collette, F., Degueldre, C., Franck, G., et al. (2003). Brain correlates of performance in a free/cued recall task with semantic encoding in Alzheimer's disease. Alzheimer Dis. Assoc. Disordering. 17: 35-45.Google Scholar
  48. Le Roc'h, K., Rancurel, G., Poitrenaud, J., Bourgin, P., and Sebban, C. (1993). Fluidité verbale et cohérence EEG dans la maladie d'Alzheimer. Neurophysiol. Clin. 23: 422-433.PubMedGoogle Scholar
  49. Leuchter, A. F., Newton, T. F., Cook, I. A., Walter, D. O., Rosenberg-Thompson, S., and Lachenbruch, P. A. (1992). Changes in brain functional connectivity in alzheimer-type and multi-infarct dementia. Brain 115: 1543-1561.PubMedGoogle Scholar
  50. Lichtheim, L. (1885). On aphasia. Brain 7: 433-484.Google Scholar
  51. Locatelli, T., Cursi, M., Liberati, D., Franceschi, M., and Comi, G. (1998). EEG coherence in Alzheimer's disease. Electroencephalogr. Clin. Neurophysiol. 106: 229-237.PubMedGoogle Scholar
  52. Lyoo, K., Satlin, A., Lee, C. K., and Renshaw, P. F. (1997). Regional atrophy of the corpus callosum in subjects with Alzheimer's disease and multi-infarct dementia. Psychiatry Res.: Neuroimaging 74: 63-72.Google Scholar
  53. Mattis, S. (1973). Dementia rating scale, NFER-Nelson, Winsor.Google Scholar
  54. Mesulam, M. M. (1998). From sensation to cognition. Brain 121: 1013-1052.PubMedGoogle Scholar
  55. Moes, P., Jeeves, M. A., and Cook, K. (1995). Bimanual coordination with aging: Implications for interhemispheric transfer. Dev. Neuropsychol. 11: 23-40.Google Scholar
  56. Mohr, E., Cox, C., Williams, J., Chase, T. N., and Fedio, P. (1990). Impairment of central auditory function in Alzheimer's disease. J. Clin. Exp. Neuropsychol. 12: 235-246.PubMedGoogle Scholar
  57. Morris, R. G. (1994). Working memory in Alzheimer-Type dementia. Neuropsychology 8: 544-554.Google Scholar
  58. Morris, R. G. (1996). Neurobiological correlates of cognitive dysfunction. In: Morris, R. G. (ed.), The Cognitive Neuropsychology of Alzheimer-type Dementia, Oxford University Press, Oxford, pp. 223-254.Google Scholar
  59. Morrison, J., Scherr, S., Lewis, D., Campbell, M., Bloom, F., Rogers, J., et al. (1986). The laminar and regional distribution of neocortical somatostatin and neuritic plaques: Implications for Alzheimer's disease as a global neocortical disconnection syndrome. In: Scheibel, A., Wechsler, A., and Brazier, M. (eds.), The Biological Substrates of Alzheimer's Disease, Academic Press, Orlando, pp. 115-131.Google Scholar
  60. Mottaghy, F. M., Krause, B. J., Kemna, L. J., Töpper, R., Tellmann, L., Beu, M., et al. (2000). Modulation of the neuronal circuitry subserving working memory in healthy human subjects by repetitive transcranial magnetic stimulation. Neurosci. Lett. 280: 167-170.PubMedGoogle Scholar
  61. Nyberg, L., and Cabeza, R. (2000). Brain imaging of memory. In: Tulving, E., and Craik, F. I. M. (eds.), The Oxford Handbook of Memory, Oxford University Press, Oxford, pp. 501-519.Google Scholar
  62. O'sullivan, M., Jones, D. K., Summers, P. E., Morris, R. G., Williams, S. C. R., and Markus, H. S. (2001). Evidence for cortical "disconnection" as a mechanism of age-related cognitive decline. Neurology 57: 632-638.PubMedGoogle Scholar
  63. Pantel, J., Schröder, J., Jauss, M., Essig, M., Minakaran, R., Schönknecht, P., et al. (1999). Topography of callosal atrophy reflects the distribution of regional cerebral volume reduction in Alzheimer's disease. Psychiatry Res. 90: 181-192.PubMedGoogle Scholar
  64. Pascual-Leone, A., Walsh, V., and Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience: Virtual lesion, chronometry, and functional connectivity. Curr. Opin. Neurobiol. 10: 232-237.PubMedGoogle Scholar
  65. Pearson, R. C. A., Esiri, M. M., Hiorns, R. W., Wilcock, G. K., and Powell, T. P. S. (1985). Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 82: 4531-4534.PubMedGoogle Scholar
  66. Peled, A. (1999). Multiple constraint organization in the brain: A theory for schizophrenia. Brain Res. Bull. 49: 245-250.PubMedGoogle Scholar
  67. Perry, R. J., and Hodges, J. R. (1999). Attention and executive deficits in Alzheimer's disease: A critical review. Brain 122: 383-404.PubMedGoogle Scholar
  68. Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., and Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56: 303-308.PubMedGoogle Scholar
  69. Reuter-Lorentz, P. A., and Stanczak, L. (2000). Differential effects of aging on the functions of the corpus callosum. Dev. Neuropsychol. 18: 113-137.PubMedGoogle Scholar
  70. Rose, S. E., Chen, F., Chalk, J. B., Zelaya, F. O., Strugnell, W. E., Benson, M., et al. (2000). Loss of connectivity in Alzheimer's disease: An evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging. ET J. 69: 528-530.Google Scholar
  71. Schröder, J., Buchsbaum, M. S., Shihabuddin, L., Tang, C., Wie, T. C., Spiegel-Cohen, J., et al. (2001). Patterns of cortical activity and memory performance in Alzheimer's disease. Biol. Psychiatry 49: 426-436.PubMedGoogle Scholar
  72. Shallice, T. (1988). From Neuropsychology to Mental Structures, Cambridge University Press, Cambridge.Google Scholar
  73. Sperry, R. W. (1961). Cerebral organization and behavior. Science 133: 1749-1757.Google Scholar
  74. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. J. Exp. Psychol. 6: 643-661.Google Scholar
  75. Teipel, S. J., Hampel, H., Pietrini, P., Alexander, G. E., Horwitz, B., Daley, E., et al. (1999). Region-specific corpus callosum atrophy correlates with the regional pattern of cortical glucose metabolism in Alzheimer's disease. Arch. Neurol. 56: 467-473.PubMedGoogle Scholar
  76. Tulving, E., and Markowitsch, H. J. (1998). Episodic and declarative memory: role of the hippocampus. Hippocampus 8: 198-204.PubMedGoogle Scholar
  77. Uylings, H. B. M., and de Brabander, J. M. (2002). Neuronal changes in normal human aging and Alzheimer's disease. Brain Cogn. 49: 268-276.PubMedGoogle Scholar
  78. Van der Linden, M., and Coyette, F., and Members of GREMEM (GRECO) (in press). Elaboration d'une version verbale de la procédure de rappel libre/rappel indicé de Grober et Buschke. In: Van der Linden, M., Deweer, B., Adam, S., Coyette, F., and Poitrenaud, J. (eds.), L'évaluation de la mémoire épisodique: Mise au point et étalonnage de quatre épreuves, Solal, Marseille.Google Scholar
  79. Van der Linden, M., Meulemans, Th., Marczewski, Ph., and Collette, F. (2001). The relationships between episodic memory, working memory, and executive functions: The contribution of the prefrontal cortex. Psychol. Belg. 40: 275-297.Google Scholar
  80. Van Hoesen, G.W. (1990). The dissection by Alzheimer's disease of cortical and limbic neural systems relevant to memory. In: McGaugh, J. L., Weinberger, N. M., and Lynch, G. (eds.), Brain Organization and Memory: Cells, Systems and Circuits, Oxford University Press, Oxford, pp. 234-261.Google Scholar
  81. Van Hoesen, G. W. (1997). Ventromedial temporal lobe anatomy, with comments on Alzheimer's disease and temporal injury. J. Neuropsychiatry Clin. Neurosci. 9: 331-341.PubMedGoogle Scholar
  82. Wada, Y., Nanbu, Y., Kikuchi, M., Koshino, Y., Hashimoto, T., and Yamaguchi, N. (1998a). Abnormal functional connectivity in Alzheimer's disease: Intrahemispheric EEG coherence during rest and photic stimulation. Eur. Arch. Psychiatry Clin. Neurosci. 248: 203-208.PubMedGoogle Scholar
  83. Wada, Y., Nanbu, Y., Koshino, Y., Yamaguchi, N., and Hashimoto, T. (1998b). Reduced interhemispheric EEG coherence in Alzheimer's disease: Analysis during rest and photic stimulation. Alzheimer Dis. Assoc. Disord. 12: 175-181.PubMedGoogle Scholar
  84. Weinberger, D. R. (1993). A connectionist approach to the prefrontal cortex. J. Neuropsychiatry Clin. Neurosci. 5: 241-253.PubMedGoogle Scholar
  85. Weis, S., Jellinger, K., and Wegner, E. (1991). Morphometry of the corpus callosum in normal aging and Alzheimer's disease. J. Neural Transm. Suppl. 33: 35-38.Google Scholar
  86. Weissman, D. H., and Banich, M. T. (2000). The cerebral hemispheres cooperate to perform complex but not simple tasks. Neuropsychology 14: 41-59.PubMedGoogle Scholar
  87. Wernicke, C. (1874/1977). Der aphasische symptomencomplex: Eine psychologische studie auf anatomischer basis. In: Eggert, G. H. (ed.), Wernicke's Works on Aphasia: A Sourcebook and Review, Mouton, The Hague, pp. 91-145.Google Scholar
  88. Yamauchi, H., Fukuyama, H., Nagahama, Y., Katsumi, Y., Hayashi, T., Oyanagi, C., et al. (2000). Comparison of the pattern of atrophy of the corpus callosum in frontotemporal dementia, progressive supranuclear palsy and Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 69: 623-629.PubMedGoogle Scholar
  89. Zimmerman, P., and Fimm, B. (1994) Tests d'évaluation de l'attention (TEA), Psytest, Würselen.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Cognitive Psychopathology UnitUniversity of GenevaGenevaSwitzerland
  2. 2.Neuropsychology DepartmentUniversity of LiégeLiégeBelgium

Personalised recommendations