Russian Journal of Plant Physiology

, Volume 50, Issue 3, pp 374–380 | Cite as

A Temperature Dependence of the Intra- and Extracellular Fatty-Acid Composition of Green Algae and Cyanobacterium

  • N. N. Sushchik
  • G. S. Kalacheva
  • N. O. Zhila
  • M. I. Gladyshev
  • T. G. Volova


The effect of ambient temperature on the composition of intracellular fatty acids and the release of free fatty acids (FFA) into a medium by cyanobacterium Spirulina platensis and eukaryotic microalgae, Chlorella vulgaris and Botryococcus braunii, was studied using their batch cultures. It was found that all the species studied, regardless of their taxonomic status, responded to the temperature regime by similar changes in their intracellular fatty acid composition: the relative content of more unsaturated fatty acids decreased with the elevation of temperature. At the same time, in the prokaryote, this temperature shift blocked, first of all, the elongation of 16:0 to 18:0 and then their further desaturation. In eukaryotes, the change in the desaturation of dienoic to trienoic fatty acids was the most pronounced process. The ratio of dienoic to trienoic fatty acids remained almost unchanged in S. platensis. The relative content of extracellular unsaturated FFA increased in the prokaryotic organism S. platensis at a higher temperature. But no significant changes in the composition of extracellular unsaturated FFA were detected in eukaryotic algae upon temperature elevation.

green algae cyanobacterium lipids fatty acids secretion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kenyon, C.N., Rippka, R., Stanier, R., Fatty Acid Composition and Physiological Properties of Some Filamentous Blue-Green Algae, Arch. Microbiol., 1972, vol. 83, pp. 216–236.Google Scholar
  2. 2.
    Cobalas, M.A. and Lechado, J.Z., Lipids in Microalgae. A Review: 1. Biochemistry, Grasas y Aceites (Esp.), 1989, vol. 40, pp. 118–145.Google Scholar
  3. 3.
    Claustre, H., Marty, J.C., and Cassiani,L., Intraspecies Differences in the Biochemical Composition of a Diatom in Villefranche-sur-Mer-Bay, Mediterranean Sea, I. Exp. Mar. Biol. Ecol., 1989, vol. 129, pp. 17–32.Google Scholar
  4. 4.
    Vestal, J.R. and White, D.C., Lipid Analysis in Microbial Ecology. Quantitative Approaches to the Study of Microbial Communities, BioScience, 1989, vol. 39, pp. 535–540.Google Scholar
  5. 5.
    Reemtsma, T., Haake, B., Ittekkot, V., Naur, R., and Brockmann, U., Downward Flux of Particulate Fatty Acids in the Central Arabian Sea, Mar. Chem., 1990, vol. 29, pp. 183–202.Google Scholar
  6. 6.
    Gladyshev, M.I., Kalacheva, G.S., and Sushchik, N.N., Free Fatty Acids of Surface Film in the Sydinsky Bay of the Krasnoyarsk Reservoir, Int. Rev. Hydrobiol., 1993, vol. 78, pp. 575–578.Google Scholar
  7. 7.
    Gladyshev, M.I., Sushchik, N.N., Kalacheva, G.S., and Shchur, L.A., Free Fatty Acid Composition in the Water Surface Film and the Kinetics of Self-Purification from Phenolic Compounds in the Forest Pond during “Flowering” of Volvox aureus, Dokl. Akad. Nauk, 1996, vol. 349, pp. 840–843.Google Scholar
  8. 8.
    Billmire, E. and Aaronson, S., The Secretion of Lipids by the Freshwater Phytoflagellata Ochromonas danica, Limnol. Oceanogr., 1976, vol. 21, pp. 138–140.Google Scholar
  9. 9.
    Fogg, G.E., The Ecological Significance of Extracellular Products of Phytoplankton Photosynthesis, Bot. Mar., 1983, vol. 25, pp. 3–14.Google Scholar
  10. 10.
    Zlotnik, I. and Dubinsky, Z., The Effect of Light and Temperature on DOC Excretion by Phytoplankton, Limnol. Oceanogr., 1989, vol. 34, pp. 831–839.Google Scholar
  11. 11.
    Staats, N., de Winder, B., Stal, L.J., and Muur, L.R., Isolation and Characterization of Extracellular Polysaccharides from Epipelic Diatoms Cylindrotheca closterium and Navicula salinarium, Eur. J. Phycol., 1999, vol. 34, pp. 161–169.Google Scholar
  12. 12.
    Parrish, C.C., Dissolved and Particulate Marine Lipid Classes: A Review, Mar. Chem., 1988, vol. 23, pp. 17–40.Google Scholar
  13. 13.
    Kattner, G. and Brockmann, U.H., Fatty Acid Composition of Dissolved and Particulate Matter in Surface Films, Mar. Chem., 1978, vol. 63, pp. 233–241.Google Scholar
  14. 14.
    Mayers, A.P and Kawka, O.E., Fractionation of Hydrophobic Organic Materials in Surface Microlayers, J. Great Lakes Res., 1982, vol. 8, pp. 288–298.Google Scholar
  15. 15.
    Reynolds, C.S., The Ecology of Freshwater Phytoplankton, Cambridge: Cambridge Univ. Press, 1984.Google Scholar
  16. 16.
    Harwood, J.L. and Jones, A.L., Lipid Metabolism in Algae, Adv. Bot. Res., 1989, vol. 10, pp. 1–53.Google Scholar
  17. 17.
    Sirenko, L.A., The Technology of Alga Laboratory Culivation, Metody fiziologo-biokhimicheskogo issledovaniya vodoroslei v hidrobiologicheskoi praktike (Methods for Physiological and Biochemical Studying of Algae in the Hydrobiology), Topachevsky, A.V., Ed., Kiev: Naukova Dumka, 1975, pp. 5–18.Google Scholar
  18. 18.
    Volova, T.G., Kalacheva, G.S., Zhila, N.O., and Plotnikov, V.F., Physiological and Biochemical Properties of the Alga Botryococcus brauni, Fiziol. Rast. (Moscow), 1994, vol. 41, pp. 893–898 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  19. 19.
    Kalacheva, G.S. and Sushchik, N.N., Fatty Acid Composition of Spirulina platensis as Related to the Age and Mineral Nutrition of the Culture, Fiziol. Rast. (Moscow), 1994, vol. 41, pp. 275–282 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar
  20. 20.
    Pinevich, V.V., Versilin, N.N., and Mikhailov, A.A., Studying of Spirulina platensis, a New Organism for Highly Intensive Cultivation, Fiziol. Rast. (Moscow), 1970, vol. 17, pp. 1037–1046 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  21. 21.
    Kalacheva, G.S., Zhila, N.O., and Volova, T.G., Lipids of the Green Alga Botryococcus brauni at Various Stages of Its Development in the Periodic Culture, Mikrobiologiya, 2001, vol. 70, pp. 305–312.Google Scholar
  22. 22.
    Gladyshev, M.I., Emelianova, A.Y., Kalacheva, G.S., Zotina, T.A., Gaevsky, N.A., and Zhilenkov, M.D., Gut Content Analysis of Grammarus lacustris from a Siberian Lake Using Biochemical and Biophysical Methods, Hydrobiologiya, 2000, vol. 431, pp. 155–163.Google Scholar
  23. 23.
    Christie, W.W., Gas Chromatography and Lipids. A Practical Guide, Ayr (Scotland): The Oily Press, 1989.Google Scholar
  24. 24.
    Plokhinsky, N.A., Algoritmy biometrii (Algorhythms of Biometry), Moscow: Mosk. Gos. Univ., 1980.Google Scholar
  25. 25.
    Somerville, C. and Browse, J., Plant Lipids: Metabolism, Mutants, and Membranes, Science, 1991, vol. 252, pp. 80–87.Google Scholar
  26. 26.
    Sakamoto, T., Shen, G., Higashi, S., Murata N., and Bryant, D.A., Alteration of Low-Temperature Susceptibility of the Cyanobacterium Synechococcus sp. PCC7002 by Genetic Manipulation of Membrane Lipid Unsaturation, Arch. Microbiol., 1998, vol. 169, pp. 2820–2887.Google Scholar
  27. 27.
    Thompson, G.A., Lipids and Membrane Function in Green Algae, Biochim. Biophys. Acta, 1996, vol. 1302, pp. 17–45.Google Scholar
  28. 28.
    DioRusso, C.C., Black, P.N., and Weimar, J.D., Molecular Inroads into Regulation and Metabolism of Fatty Acids, Lessons from Bacteria, Prog. Lip. Res., 1999, vol. 38, pp. 129–197.Google Scholar
  29. 29.
    Parrish, C.C., Bodennec, G., Sebedio, J.-L., and Gentien, P., Intra-and Extracellular Lipids in Cultures of the Toxic Dinoflagellata Gyrodinium aureolum, Phytochemistry, 1993, vol. 32, pp. 291–295.Google Scholar
  30. 30.
    Cohen, Z., Norman, H.A., and Heimer, Y.M., Microalgae as a Source of δ3 Fatty Acids, Plants in Human Nutrition. World Review of Nutrition and Dietetics, vol. 16, Simopoulos, A.P., Ed., Basel: Karger, pp. 1-31.Google Scholar
  31. 31.
    Los, D.A., Fatty Acid Desaturases: Adaptive Expression and Principles of Regulation, Fiziol. Rast. (Moscow), 1997, vol. 44, pp. 528–540 (Russ. J. Plant Physiol., Engl. Transl.).Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • N. N. Sushchik
    • 1
  • G. S. Kalacheva
    • 1
  • N. O. Zhila
    • 1
  • M. I. Gladyshev
    • 1
  • T. G. Volova
    • 1
  1. 1.Institute of Biophysics, Siberian DivisionRussian Academy of Sciences, AkademgorodokKrasnoyarskRussia

Personalised recommendations