Journal of Chemical Ecology

, Volume 29, Issue 5, pp 1143–1158 | Cite as

Inheritance Patterns of Phenolics in F1, F2, and Back-Cross Hybrids of Willows: Implications for Herbivore Responses to Hybrid Plants

  • Per HallgrenEmail author
  • Arsi Ikonen
  • Joakim Hjältén
  • Heikki Roininen


The aim of this study was to determine the inheritance pattern of phenolic secondary compounds in pure and hybrid willows and its consequences for plant resistance to leaf-feeding insects. F1, F2, and back-cross hybrids along with pure species were produced by hand pollination of pure, naturally-growing Salix caprea (L., Salicaceae) and S. repens (L.) plants. Leaf concentrations of condensed tannins and seven different phenolic glucosides were determined by using butanol-HCl and HPLC analyses. Insect herbivore leaf damage was measured on the same leaves as used for chemical analyses. We found hybrids to be approximately intermediate between the parental species: S. caprea with high levels of condensed tannins and no phenolic glucosides, and S. repens with low levels of condensed tannins and high levels of phenolic glucosides. We also found a negative correlation between concentrations of condensed tannins and phenolic glucosides, suggesting a trade-off in production of these two substances. F2 hybrids and the hybrid back-crossed to S. caprea were significantly more damaged by insect herbivores than the parental species and the F1 hybrid, indicating reduced resistance and possibly a selective disadvantage for these hybrid categories.

Phenolic glucosides condensed tannins Salix caprea S. repens willows herbivore resistance Chrysomelidae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, M. L. 1997. Natural Hybridization and Evolution. Oxford University Press, New York.Google Scholar
  2. Arnold, M. L., Bulger, M. R., Burke, J. M., Hempel, A. L., and Williams, J. H. 1999. Natural hybridization: How low can it go and still be important? Ecology 80:371–381.Google Scholar
  3. Boecklen, W. J. and Spellenberg, R. 1990. Structure of herbivore communities in two oak (Quercus spp.) hybrid zones. Oecologia 85:92–100.Google Scholar
  4. Buschmann, H. and Spring, O. 1995. Sesquiterpene lactones as a result from interspecific hybridization in Helianthus species. Phytochemistry 39:367–371.Google Scholar
  5. Court, W. A., Brandle, J. E., Pocs, R., and Hendel, J. G. 1992. The chemical composition of somatic hybrids between Nicotiana tabacum and N. debneyi. Can. J. Plant Sci. 72:209–225.Google Scholar
  6. Denno, R. F., Larson, S., and Olmstead, K. L. 1990. Role of enemy-free space and plant quality in host-plant selection by willow beetles. Ecology 71:124–137.Google Scholar
  7. Fritz, R. S. 1999. Resistance of hybrid plants to herbivores: Genes, environment, or both? Ecology 80:382–391.Google Scholar
  8. Fritz, R. S., Nichols-Orians, C. M., and Brunsfeld, S. J. 1994. Interspecific hybridization of plants and resistance to herbivores: Hypotheses, genetics, and variable responses in a diverse herbivore community. Oecologia 97:106–117.Google Scholar
  9. Fritz, R. S., Roche, B. M., and Brunsfeld, S. J. 1998. Genetic variation in resistance of hybrid willows to herbivores. Oikos 83:117–128.Google Scholar
  10. Fritz, R. S., Roche, B. M., Brunsfeld, S. J., and Orians, C. M. 1996. Interspecific and temporal variation in herbivore responses to hybrid willows. Oecologia 108:121–129.Google Scholar
  11. Gustavsson, B. 2001. Catalogus Coleopterorum Sueciae. 2001-11–27.Google Scholar
  12. Häggström, H. E. 1997. Variable plant quality and performance of the willow-feeding leaf beetle Galerucella lineola. Doctoral Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
  13. Hair, J. F., Anderson, R. E., Tatham, R. L., and Black, W. C. 1995. Multivariate Data Analyses with Readings. Prentice-Hall, New Jersey.Google Scholar
  14. Hjältén, J. 1997. Willow hybrids and herbivory: A test of hypotheses of phytophage response to hybrid plants using the generalist leaf-feeder Lochmea caprea (Chrysomelidae). Oecologia 109:571–574.Google Scholar
  15. Hjältén, J. 1998. An experimental test of hybrid resistance to insects and pathogens using Salix caprea, S-repens and their F1 hybrids. Oecologia 117:127–132.Google Scholar
  16. Hjältén, J., Hallgren, P. J., and Qian, H. 2002. The importance of parent host status for hybrid susceptibility to herbivores: A test with two hybrid lines of willows. Ecoscience 9:339–349.Google Scholar
  17. Jolivet, P. and Hawkeswood, T. J. 1995. Host Plants of Chrysomelidae of the World: An Essay About the Relationships Between the Leaf Beetles and Their Food Plants. Backhuys Publishers, Leiden, The Netherlands.Google Scholar
  18. Julkunen-Tiitto, R. 1986. A chemotaxonomic survey of phenolics in leaves of northern Salicaceae species. Phytochemistry 25:663–667.Google Scholar
  19. Julkunen-Tiitto, R. 1989. Distribution of certain phenolics in Salix species (Salicaceae). PhD Thesis, Publications in Sciences No 15. University of Joensuu, Joensuu, Finland.Google Scholar
  20. Julkunen-Tiitto, R., Rousi, M., Bryant, J., Sorsa, S., Keinänen, M., and Sikanen, H. 1996. Chemical diversity of several Betulaceae speicies: Comparison of phenolics and terpenoids in northern birch stems. Tree Struct. Funct. 11:16–22.Google Scholar
  21. Julkunen-Tiitto, R. and Sorsa, S. 2001. Testing the effects of drying methods on willow flavonoids, tannins, and salicylates. J. Chem. Ecol. 27:779–789.Google Scholar
  22. Kelly, M. T. and Curry, J. P. 1991. The influence of phenolic compounds on the suitability of 3 Salix species as hosts for the willow beetle Phratora vulgatisima. Entomol. Exp. Appl. 61:25–32.Google Scholar
  23. Kendall, D. A., Hunter, T., Arnold, G. M., Liggit, J., Morris, T., and Wiltshire, C. W. 1996. Susceptibility of willow clones (Salix spp.) to herbivory by Phyllodecta vulgatissima (L.), and Galerucella lineola (Fab.) (Coleoptera, Chrysomelidae). Ann. Appl. Biol. 129:379–390.Google Scholar
  24. Koch, K. 1992. Die Käfer Mitteleuropas E, Band 3, ökologi. Goecke & Evers, Krefeld, Germany.Google Scholar
  25. Kolehmainen, J., Julkunen-Tiitto, R., Roininen, H., and Tahvanainen, J. 1994. Importance of phenolic glucosides in host selection of shoot galling sawfly, Euura amerinae. Salix pentandra. J. Chem. Ecol. 20:2455–2466.Google Scholar
  26. Kolehmainen, J., Julkunen-Tiitto, R., Roininen, H., and Tahvanainen, J. 1995. Phenolic glucosides as feeding cues for willow-feeding leaf beetles. Entomol. Exp. Appl. 74:235–243.Google Scholar
  27. Krebs, C. J. 1999. Ecological Methodology. Benjamin Cummings, Menlo Park, California.Google Scholar
  28. Levy, M. and Levin, D. A. 1974. Novel flavenoids and reticulate evolution in the Phlox pilosa-P. drumondi complex. Am. J. Bot. 61:156–167.Google Scholar
  29. Lid, J. 1979. Flora of Norway and Sweden (in Norwegian). Det Norska Samlaget, Oslo, Norway.Google Scholar
  30. Lindroth, R. L., 1991. Differential toxicity of plant allelo chemicals to insects, roles of enzymatic detoxification systems, pp. 1-33. in E. A. Bernays (ed.). Insect-Plant Interactions, Vol. III. CRC Press, Boca Raton, Florida.Google Scholar
  31. Messina, F. J., Richards, J. H., and McArthur, E. D. 1996. Variable responses of insects to hybrid versus parental sagebrush in common gardens. Oecologia 107:513–521.Google Scholar
  32. Mossberg, B., Stenberg, L., and Eriksson, S. 1992. Den nordiska floran, The Nordic Flora (in Swedish). Wahlström & Widstrand, Turnhout, Belgium.Google Scholar
  33. Moulia, C. 1999. Parasitism of plant and animal hybrids: Are facts and fates the same? Ecology 80:392–406.Google Scholar
  34. Orians, C. M. 2000. The effects of hybridization in plants on secondary chemistry: Implications for the ecology and evolution of plant–herbivore interactions. Am. J. Bot. 87:1749–1756.Google Scholar
  35. Orians, C. M. and Fritz, R. S. 1995. Secondary chemistry of hybrid and parental willows: Phenolic glucosides and condensed tannins in Salix sericea, S. eriocephala, and their hybrids. J. Chem. Ecol. 21:1245–1253.Google Scholar
  36. Orians, C. M., Griffiths, M. E., Roche, B. M., and Fritz, R. S. 2000. Phenolic glucosides and condensed tannins in Salix sericea, S. eriocephala and their F1 hybrids: Not all hybrids are created equal. Biochem. Syst. Ecol. 28:619–632.Google Scholar
  37. Orians, C. M., Huang, C. H., Wild, A., Dorfman, K. A., Zee, P., Dao, M. T. T., and Fritz, R. S., 1997. Willow hybridization differentially affects preference and performance of herbivorous beetles. Entomol. Exp. Appl. 83:285–294.Google Scholar
  38. Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43:223–225.Google Scholar
  39. Rieseberg, L. H. and Ellstrand, N. C. 1993. What can molecular and morphological markers tell us about plant hybridization? Crit. Rev. Plant. Sci. 12:213–241.Google Scholar
  40. Roche, B. M. and Fritz, R. S. 1997. Genetics of resistance of Salix sericea to a diverse community of herbivores. Evolution 51:1490–1498.Google Scholar
  41. Roininen, H., Price, P. W., Julkunen-Tiitto, R., Tahvanainen, J., and Ikonen, A. 1999. Oviposition stimulant for a gall-inducing sawfly, Euura lasiolepis, on willow is a phenolic glucoside. J. Chem. Ecol. 25:943–953.Google Scholar
  42. Soetens, P., Pasteels, J. M., Daloze, D., and Kaisin, M. 1998. Host plant influence on the composition of the defensive secretion of Chrysomela vigintipunctata larvae (Coleoptera: Chrysomelidae). Biochem. Syst. Ecol. 26:703–712.Google Scholar
  43. Soetens, P., Rowell-Rahier, M., and Pasteels, J. M. 1991. Influence of phenolglucosides and trichome density on the distribution of insects herbivores on willows. Entomol. Exp. Appl. 59:175–187.Google Scholar
  44. Spring, O. and Schilling, E. E. 1989. Chemosystematic investigation of the annual species Helianthus (Asteraceae). Biochem. Syst. Ecol. 17:519–528.Google Scholar
  45. Strauss, S. Y. 1994. Levels of herbivory and parasitism in host hybrid zones. Trends Ecol. Evol. 9:209–214.Google Scholar
  46. Tahvanainen, J., Julkunen-Tiitto, R., and Kettunen, J. 1985. Phenolic glucosides govern the food selection pattern of willow feeding leaf beetles. Oecologia 67:52–56.Google Scholar
  47. Venables, W. N., Smith, D. M., and The R-Development Core Team, July 18, 2002. An Introduction to R. Scholar
  48. Venables, W. N. and Ripley, B. D. 1999. Modern Applied Statistics with S-Plus, Springer, New York.Google Scholar
  49. Waterman, P. G. and Mole, S. 1994. Analyses of Phenolic Plant Metabolites. Blackwell Scientific, Oxford.Google Scholar
  50. Whitham, T. G. 1989. Plant hybrid zones as sinks for pests. Science 244:1490–1493.Google Scholar
  51. Whitham, T. G., Morrow, P. A., and Potts, B. M. 1994. Plant hybrid zones as centers of biodiversity: The herbivore community of two endemic Tasmanian eucalypts. Oecologia 97:481–490.Google Scholar
  52. Zar, J. H. 1996. Biostatistical Analyses. Prentice-Hall, New Jersey.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Per Hallgren
    • 1
    Email author
  • Arsi Ikonen
    • 2
  • Joakim Hjältén
    • 1
  • Heikki Roininen
    • 2
  1. 1.Department of Animal EcologySwedish University of Agricultural SciencesUmeåSweden
  2. 2.Department of BiologyUniversity of JoensuuJoensuuFinland

Personalised recommendations