Journal of Biomolecular NMR

, Volume 26, Issue 3, pp 215–240 | Cite as

Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts

  • Stephen Neal
  • Alex M. Nip
  • Haiyan Zhang
  • David S. WishartEmail author


A computer program (SHIFTX) is described which rapidly and accurately calculates the diamagnetic 1H, 13C and 15N chemical shifts of both backbone and sidechain atoms in proteins. The program uses a hybrid predictive approach that employs pre-calculated, empirically derived chemical shift hypersurfaces in combination with classical or semi-classical equations (for ring current, electric field, hydrogen bond and solvent effects) to calculate 1H, 13C and 15N chemical shifts from atomic coordinates. The chemical shift hypersurfaces capture dihedral angle, sidechain orientation, secondary structure and nearest neighbor effects that cannot easily be translated to analytical formulae or predicted via classical means. The chemical shift hypersurfaces were generated using a database of IUPAC-referenced protein chemical shifts – RefDB (Zhang et al., 2003), and a corresponding set of high resolution (<2.1 Å) X-ray structures. Data mining techniques were used to extract the largest pairwise contributors (from a list of ∼20 derived geometric, sequential and structural parameters) to generate the necessary hypersurfaces. SHIFTX is rapid (< 1 CPU second for a complete shift calculation of 100 residues) and accurate. Overall, the program was able to attain a correlation coefficient (r) between observed and calculated shifts of 0.911 (1Hα), 0.980 (13Cα), 0.996 (13Cβ), 0.863 (13CO), 0.909 (15N), 0.741 (1HN), and 0.907 (sidechain 1H) with RMS errors of 0.23, 0.98, 1.10, 1.16, 2.43, 0.49, and 0.30 ppm, respectively on test data sets. We further show that the agreement between observed and SHIFTX calculated chemical shifts can be an extremely sensitive measure of the quality of protein structures. Our results suggest that if NMR-derived structures could be refined using heteronuclear chemical shifts calculated by SHIFTX, their precision could approach that of the highest resolution X-ray structures. SHIFTX is freely available as a web server at

calculation chemical shift data mining NMR prediction protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, E.N. and Hubbard, R.E. (1984) Prog. Biophys. Mol. Biol., 44, 97-179.Google Scholar
  2. Banci, L., Bertini, I., Savellini, G.G., Romagnoli, A., Turano, P., Cremonini, M.A., Luchinat, C. and Gray, H.B. (1997) Prot. Struct. Funct. Gen., 29, 68-76.Google Scholar
  3. Baxter, N.J. and Williamson, M.P. (1997) J. Biomol. NMR, 9, 359-369.Google Scholar
  4. Beger, R.D. and Bolton, P.H. (1997) J. Biomol. NMR, 10, 129-142.Google Scholar
  5. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E. (2000) Nucl. Acids Res., 28, 235-242.Google Scholar
  6. Bjorndahl, T.C., Watson, M.S., Slupsky, C.M., Spyracopolous, L., Sykes, B.D. and Wishart, D.S. (2001) J. Biomol. NMR, 19, 187-188.Google Scholar
  7. Braun, D., Wider, G. and Wüthrich, K. (1994) J. Am. Chem. Soc., 116, 8466-8469.Google Scholar
  8. Buckingham, A.D. (1960) Can. J. Chem., 38, 300-307.Google Scholar
  9. Case, D.A. (1998) Curr. Opin. Struct. Biol., 8, 624-630.Google Scholar
  10. Case, D.A. (2000) Curr. Opin. Struct. Biol., 10, 197-203.Google Scholar
  11. Cornilescu, G., Delaglio, F. and Bax, A. (1999) J. Biomol. NMR, 13, 289-302.Google Scholar
  12. Dalgarno, D.C., Levine, B.A. and Williams, R.J.P. (1983) Biosci. Rep., 3, 443-452.Google Scholar
  13. de Dios, A.C., Pearson, J.G. and Oldfield, E. (1993) Science, 260, 1491-1496.Google Scholar
  14. Derewenda, Z.S., Lee, L. and Derewenda, U. (1995) J. Mol. Biol. 252, 248-262.Google Scholar
  15. Doreleijers, J.F., Rullmann, J.A. and Kaptein, R. (1998) J. Mol. Biol., 281, 149-164.Google Scholar
  16. Gardner, K.H., Rosen, M.K. and Kay, L.E. (1997) Biochemistry, 36, 1389-1401.Google Scholar
  17. Gibas, C.J. and Subramanian, S. (1996) Biophys. J. 71, 130-147.Google Scholar
  18. Haigh, C.W. and Mallion, R.B. (1980) Progr. NMR Spectrosc., 13, 303-344.Google Scholar
  19. Herranz, J., Gonzalez, C., Rico, M., Nieto, J.L., Santoro, J., Jimenez, M.A., Bruix, M., Neira, J.L. and Blanco, F.J. (1992) Magn. Reson. Chem., 30, 1012-1018.Google Scholar
  20. Iwadate, M., Asakura, T. and Williamson, M.P. (1999) J. Biomol. NMR, 13, 199-211.Google Scholar
  21. Kabsch, W. and Sander, C. (1983) Biopolymers, 22, 2577-2637.Google Scholar
  22. Kuszewski, J., Qin, J., Gronenborn, A.M. and Clore, G.M. (1995a) J. Magn. Reson. B., 106, 92-96.Google Scholar
  23. Kuszewski, J., Gronenborn, A.M. and Clore, G.M. (1995b) J. Magn. Reson., B107, 293-297.Google Scholar
  24. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. and Thornton, J.M. (1996) J. Biomol. NMR, 8, 477-486.Google Scholar
  25. Le, H. and Oldfield, E. (1994) J. Biomol. NMR, 4, 341-348.Google Scholar
  26. Le, H., Pearson, J.G., de Dios, A.C. and Oldfield, E. (1995). J. Am. Chem. Soc. 117, 3800-3807.Google Scholar
  27. Markley, J.L., Bax, A., Arata, Y., Hilbers, C.W., Kaptein, R., Sykes, B.D., Wright, P.E. and Wüthrich, K. (1998) J. Biomol. NMR, 12, 1-23.Google Scholar
  28. Osapay, K. and Case, D.A. (1991) J. Am. Chem. Soc., 113, 9436-9444.Google Scholar
  29. Osapay, K. and Case, D.A. (1994) J. Biomol. NMR, 4, 215-230.Google Scholar
  30. Osapay, K., Theriault, Y., Wright, P.E. and Case, D.A. (1994) J. Mol. Biol., 244, 183-197.Google Scholar
  31. Pearson, J.T., Le, H., Sanders, L.K., Godbout, N., Havlin, R.H. and Oldfield, E. (1997) J. Am. Chem. Soc. 119, 11941-11950.Google Scholar
  32. Seavey, B.R., Farr, E.A., Westler, W.M. and Markley, J.L. (1991) J. Biomol. NMR, 1, 217-236.Google Scholar
  33. Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490-5492.Google Scholar
  34. Wagner, G., Pardi, A. and Wüthrich, K. (1983) J. Am. Chem. Soc., 105, 5948.Google Scholar
  35. Williamson, M.P. and Asakura, T. (1997) Meth. Mol. Biol., 60, 53-69.Google Scholar
  36. Williamson, M.P., Asakura, T., Nakamura, E. and Demura, M. (1992) J. Biomol. NMR, 2, 93-98.Google Scholar
  37. Williamson, M.P., Kikuchi, J. and Asakura, T. (1995) J. Mol. Biol., 247, 541-546.Google Scholar
  38. Wishart, D.S. and Case, D.A. (2001) Meth. Enzymol., 338, 3-34.Google Scholar
  39. Wishart, D.S. and Nip, A.M. (1998) Biochem. Cell Biol., 76, 153-163.Google Scholar
  40. Wishart, D.S. and Sykes, B.D. (1994) Meth. Enzymol., 239, 363-392.Google Scholar
  41. Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. and Sykes, B.D. (1995a) J. Biomol. NMR, 5, 67-81.Google Scholar
  42. Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995b) J. Biomol. NMR, 6, 135-140.Google Scholar
  43. Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311-333.Google Scholar
  44. Wishart, D.S., Willard, L., Richards, F.M. and Sykes, B.D. (1994) VADAR: A comprehensive program for protein structure evaluation. Version 1.2. Edmonton, Alberta, Canada.Google Scholar
  45. Word, J.M., Lovell, S.C., Richardson, J.S. and Richardson, D.C. (1999) J. Mol. Biol., 285, 1733-1747.Google Scholar
  46. Xu, X-P. and Case, D.A. (2001) J. Biomol. NMR, 21, 321-333.Google Scholar
  47. Xu, X-P. and Case, D.A. (2002) Biopolymers, 65, 408-423.Google Scholar
  48. Zhang, H., Neal, S. and Wishart, D.S. (2003) J. Biomol. NMR, 25, 173-195.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Stephen Neal
    • 1
  • Alex M. Nip
    • 1
  • Haiyan Zhang
    • 1
  • David S. Wishart
    • 1
    Email author
  1. 1.Faculty of Pharmacy & Pharmaceutical SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations