Structural Chemistry

, Volume 14, Issue 3, pp 271–278

Theoretical Study of Molecular Structure, Tautomerism, and Geometrical Isomerism of N-Methyl- and N-Phenyl-Substituted Cyclic Imidazolines, Oxazolines, and Thiazolines

Article

Abstract

The geometries of various tautomers and isomers of 2-methylamino-2-imidazoline, 2-methylamino-2-oxazoline, 2-methylamino-2-thiazoline, 2-phenylamino-2-imidazoline, 2-phenylamino-2-oxazoline, and 2-phenylamino-2-thiazoline have been studied using the Becke3LYP/6–31+G(d,p) DFT, ONIOM(Becke3LYP/6–31+G(d,p):HF/3–21G*) and ONIOM(Becke3LYP/6–31+G(d,p):AM1) methods. The optimized geometries indicate that these molecules show a distinctly nonplanar configuration of the cyclic moieties. In the gas phase, the amino tautomers (with exception of 2-phenylamino-2-imidazoline) are computed to be more stable than the imino tautomers. Of the two possible (E and Z) isomers of methyl and phenyl derivatives of imino-oxazolidine and imino-thiazolidine species, the (Z) isomers have the lowest energy. The iminozation free energies in the gas phase were found to be 5 – 15 kJ/mol. Absolute values of KT depend strongly on the accuracy of the method used for calculation of free energy. Solvation (using the MD simulations) causes, in most cases, a shift in tautomeric preference toward the imino species.

conformational analysis tautomerization cyclic imidazolines oxazolines thiazolines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Grout, R. J. In The Chemistry of Aminidines and Imidates; Patai, S., Ed; Wiley: New York, 1975; Vol. 1, pp. 255-281.Google Scholar
  2. 2.
    Elguero, J.; Marzin, C.; Katritzky, A. R.; Linda, P. The Tautomerism of Heterocycles; Academic Press: New York, 1975.Google Scholar
  3. 3.
    Raczynska, E. D.; Laurence, C. J. Chem. Res. 1990, p. 338.Google Scholar
  4. 4.
    Taft, R. W.; Raczynska, E. D.; Maria, P. C.; Leito, I.; Lewandowski, W.; Kurg, R.; Gal, J.F.; Decouzon, M.; Anvia, F. Fresenius J. Anal. Chem. 1996, 355, 412.Google Scholar
  5. 5.
    Oszczapowicz, J. In The Chemistry of Aminidines and Imidates; Patai, S.; Rappoport, Z., Eds.; Wiley: New York, 1991; Vol. 2, pp. 623-668.Google Scholar
  6. 6.
    Timmermans, P. B. M. W. M.; Smith, R. D. In Burger's Medicinal Chemistry and Drug Discovery, 5th edn. Volume 2. Therapeutic Agents; Wiley: New York, 1996; pp. 265-321.Google Scholar
  7. 7.
    Regunathan, S.; Reis, D. J. Annu Rev. Pharmacol. Toxicol. 1996, 36, 511.Google Scholar
  8. 8.
    Munk, S. A. et al. J. Med. Chem. 1996, 39, 3533.Google Scholar
  9. 9.
    Mailard, M. C. et al. J. Med. Chem. 1998, 41, 3048.Google Scholar
  10. 10.
    Pigini, M.; Ouaglia, W.; Gentili, F.; Marucci, G.; Cantalamessa, F.; Franchini, S.; Sorbi, C.; Brasili, L. Bioorg. Med. Chem. 2000, 8, 883.Google Scholar
  11. 11.
    Worth, G. A.; King, P. M.; Richards, W. G. Biochim. Biophys. Acta 1989, 993, 134.Google Scholar
  12. 12.
    De Vries, H.; Van Duijnen, P. Th.; Biophys. Chem. 1992, 43, 139.Google Scholar
  13. 13.
    Caminiti, R.; Pieretti, A.; Bencivenni, L.; Ramondo, F.; Sanna, N. J. Phys. Chem. 1996, 100, 10928.Google Scholar
  14. 14.
    Raczyńska, E. D.; Taft, R. W. Polish J. Chem. 1998, 72, 1054.Google Scholar
  15. 15.
    Marchand-Geneste, M.; Carpy, A. J. Mol. Struct. Theochem. 1999, 465, 209.Google Scholar
  16. 16.
    Remko, M.; Walsh, O. A.; Richards, W. G. Chem. Phys. Lett. 2001, 336, 156.Google Scholar
  17. 17.
    Remko, M., Walsh, O. A.; Richards, W. G. Chem. Phys. Phys. Chem. 2001, 3, 901.Google Scholar
  18. 18.
    Remko, M.; Walsh, O. A.; Richards, W. G. J. Phys. Chem. A 2001, 105, 6926.Google Scholar
  19. 19.
    Gaussian 98 (Revision A.7), Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, Jr., J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; and Pople, J. A.; Gaussian98, Rev. A.7.; Gaussian, Pittsburgh, PA, 1998.Google Scholar
  20. 20.
    Becke, A. D. Phys. Rev. 1988, A38, 3098.Google Scholar
  21. 21.
    Becke, A. D. J. Chem. Phys. 1993, 98, 5648.Google Scholar
  22. 22.
    Lee, C.; Yang, W.; Paar, R. G. Phys. Rev. 1988, B37, 785.Google Scholar
  23. 23.
    Parr, R. G.; Wang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1994.Google Scholar
  24. 24.
    Neumann, R.; Nobes, R. H.; Handy, N. C. Mol. Phys. 1996, 87, 1.Google Scholar
  25. 25.
    Svensson, M.; Humbel, S.; Froese, R.D.J.; Matsubara, T.; Sieber, S.; Morokuma, K. J. Phys. Chem. 1996, 100, 19357.Google Scholar
  26. 26.
    Humbel, S.; Sieber, S.; Morokuma, K. J. Chem. Phys. 1996, 105, 1959.Google Scholar
  27. 27.
    Froese, R.D.J.; Morokuma, K. In Encyclopedia of Computational Chemistry; Schleyer, P. V. R., Ed.; Wiley: New York, 1998.Google Scholar
  28. 28.
    Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. J. P. J. Amer. Chem. Soc. 1985, 107, 3902.Google Scholar
  29. 29.
    Swart, M.; Van Duijnen, P. Th.; DRF90 program, University of Groningen, Groningen, 2001.Google Scholar
  30. 30.
    Swart, M.; Van Duijnen, P. Th.; Snijders, J. G. J. Comp. Chem. 2001, 22, 79.Google Scholar
  31. 31.
    Clementi, E.; Corongiu, G. Methods and Techniques in Computational Chemistry, METECC–95; STEF: Cagliari, 1995.Google Scholar
  32. 32.
    ADF 2.3.3, Theoretical Chemistry; Vrije Universiteit: Amsterdam, 1997.Google Scholar
  33. 33.
    ADF 99, Theoretical Chemistry; Vrije Universiteit: Amsterdam, 1999.Google Scholar
  34. 34.
    Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerents, E. J. Theoret. Chem. Account. 1998, 99, 391.Google Scholar
  35. 35.
    Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.Google Scholar
  36. 36.
    Van Duijnen, P. Th.; Swart, M. J. Phys. Chem. A 1998, 102, 2399.Google Scholar
  37. 37.
    Remko, M.; Lyne, P. D.; Richards, W. G. Phys. Chem. Chem. Phys. 1999, 1, 5353.Google Scholar
  38. 38.
    Dapprich, S.; Komaromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J. J. Mol. Struct. Theochem. 1999, 461–462, 1.Google Scholar
  39. 39.
    Froese, R. D. J.; Morokuma, K. Chem. Phys. Lett. 1999, 305, 419.Google Scholar
  40. 40.
    Vreven, T.; Morokuma, K. J. Chem. Phys. 1999, 111, 8799.Google Scholar
  41. 41.
    Remko, M.; Lyne, P. D.; Richards, W. G. Phys. Chem. Chem. Phys. 2000, 2, 2511.Google Scholar
  42. 42.
    Roggero, I.; Civalleri, P. Ugliengo, P.; Chem. Phys. Lett. 2001, 341, 625.Google Scholar
  43. 43.
    Bondi, A. J. Phys. Chem. 1964, 68, 441.Google Scholar
  44. 44.
    Jackman, L. M.; Jen, T. J. Amer. Chem. Soc. 1975, 97, 2811.Google Scholar
  45. 45.
    De Jong, A. P.; van Dam, H. J. Med. Chem. 1980, 23, 889.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Milan Remko
    • 1
  • Piet Th. Van Duijnen
    • 2
  • Marcel Swart
    • 2
  1. 1.Department of Pharmaceutical ChemistryComenius UniversityBratislavaSlovakia
  2. 2.Department of Theoretical Chemistry, Materials Science CentreUniversity of GroningenGroningenThe Netherlands

Personalised recommendations