International Journal of Primatology

, Volume 24, Issue 3, pp 515–539 | Cite as

Dispersal Patterns Among Olive Colobus in Taï National Park

  • Amanda H. Korstjens
  • Eva Ph. Schippers


In Primates, females are more likely to be philopatric than males. However, in some species like Procolobus verus, females or individuals of both sexes disperse. In Taï National Park, Ivory Coast, olive colobus groups are small, with one or two adult males and ≤6 females. Dispersal is common for juveniles and adults of both sexes. Adult male dispersal is less common than adult female dispersal. Adult females immigrated especially into small, one-male groups indicating that food competition played a role. Furthermore, unknown sexually receptive females visited resident groups and mated with the resident males for a few days before disappearing again. Adult males dispersed when this improved their mating opportunities. All juveniles left their natal groups. The dispersal of juveniles may be a strategy to prevent inbreeding with their parents. Dispersal by juvenile males furthermore seemed to be the result of mate competition. The high dispersal rates, visits by receptive females, and dispersal of all individuals in the population suggest that moving between groups is a strategy that can be used ad hoc in several situations more easily in the olive colobus than in most other primates. The predation risks related to moving between groups were reduced by dispersing in conspecific or allospecific groups and by dispersing to neighboring groups.

Procolobus verus dispersal inbreeding avoidance competition poly-specific associations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, C. M., and Bielert, C. F. (1994). Adolescent exaggeration in female Catarrhine primates. Primates 35: 283-300.Google Scholar
  2. Berglund, A., Magnhagen, C., Bisazza, A., Koenig, B., and Huntingford, F. (1996). Female-female competition over reproduction. Behav. Ecol. 4: 184-187.Google Scholar
  3. Boesch, C., and Boesch-Achermann, H. (2000). The Chimpanzees of the Taï Forest: Behavioural Ecology and Evolution, Oxford University Press, Oxford.Google Scholar
  4. Booth, A. H. (1957). Observations on the natural history of the olive colobus monkey, Procolobus verus (van Beneden). Proc. R. Soc. Lond. B Biol. Sci. 129: 421-430.Google Scholar
  5. Bshary, R. (1995). Rote stummelaffen, Colobus badius, und Dianameerkatzen, Cercopithecus diana, im Taï-Nationalpark, Elfenbeinküste: Wozu assoziieren sie? PhD Thesis, Ludwig-Maximilian-Unviersität München, München.Google Scholar
  6. Bshary, R., and Noë, R. (1997). Anti-predation behaviour of red colobus monkeys in the presence of chimpanzees. Behav. Ecol. Sociobiol. 41: 321-333.Google Scholar
  7. Cheney, D. L. (1983). Proximate and ultimate factors relationed to the distribution of male migration. In Hinde, R. A. (ed.), Primate Social Relationships: An Integrated Approach, Blackwell Scientific Publications, Oxford, pp. 267-281.Google Scholar
  8. Cheney, D. L., and Seyfarth, R. M. (1977). Behaviour of adult and immature baboons during intergroup encounters. Nature 269: 404-406.Google Scholar
  9. Cheney, D. L., and Seyfarth, R. M. (1983). Nonrandom dispersal in free-ranging vervet monkeys: Social and genetic consequences. Am. Nat. 122: 392-412.Google Scholar
  10. Clutton-Brock, T. H. (1989). Female transfer and inbreeding avoidance in social mammals. Nature 337: 70-72.Google Scholar
  11. Clutton-Brock, T. H., and Harvey, P. H. (1976). Evolutionary rules and primate societies. In Bateson, P. P. G., and Hinde, R. A. (Eds.), Growing Points in Ethology, Cambridge University Press, Cambridge, pp. 195-237.Google Scholar
  12. Crockett, C. M. (1984). Emigration by female red howler monkeys and the case for female competition. In Small, M. F. (ed.), Female Primates: Studies by Women Primatologists, Alan R. Liss, Inc., New York, pp. 159-173.Google Scholar
  13. Crockett, C. M., and Pope, T. R. (1993). Consequences of sex differences in dispersal for juvenile red howler monkeys. In Pereira, M., and Fairbanks, L. A. (Eds.), Juvenile Primates, Oxford University press, Oxford, pp. 104-118.Google Scholar
  14. Davies, A. G., Oates, J. F., and Dasilva, G. L. (1999). Patterns of frugivory in three west African colobine monkeys. Int. J. Primatol. 20: 327-357.Google Scholar
  15. Dobson, F. S. (1982). Competition for mates and predominant juvenile male dispersal in mammals. Anim. Behav. 30: 1183-1192.Google Scholar
  16. Dobson, F. S., and Jones, W. T. (1985). Multiple causes of dispersal. Am. Nat. 126: 855-858.Google Scholar
  17. Fleury, M.-C., and Gautier-Hion, A. (1997). Better to live with allogenerics than to live alone? The case of single male Cercopithecus pogonias in troops of Colobus satanas. Int. J. Primatol. 18: 967-974.Google Scholar
  18. Greenwood, P. J. (1980). Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28: 1140-1162.Google Scholar
  19. Harcourt, A. H., Harvey, P. H., Larson, S. G., and Short, R. V. (1981). Testis weight, body weight and breeding system in primates. Nature 293: 55-57.Google Scholar
  20. Hill, W. C. O. (1952). On the external and visceral anatomy of the olive colobus monkey (Procolobus verus). Proc. R. Soc. Lond. B Biol. Sci. 122: 127-186.Google Scholar
  21. Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75: 800-802.Google Scholar
  22. Höner, O., Leumann, L., and Noë, R. (1997). Dyadic associations of red colobus and diana monkey groups in the Tai National Park, Ivory Coast. Primates 38: 281-291.Google Scholar
  23. Idani, G. (1991). Social relationships between immigrant and resident bonobo (Pan paniscus) females at Wamba. Folia Primatol. 57: 83-95.Google Scholar
  24. Isbell, L. A., and van Vuren, D. (1996). Differential costs of locational and social dispersal and their consequences for female group living primates. Behaviour 133: 1-36.Google Scholar
  25. Janson, C. H., and Goldsmith, M. L. (1995). Predicting group size in primates: Foraging costs and predation risks. Behav. Ecol. Sociobiol. 6: 326-336.Google Scholar
  26. Janson, C. H., and van Schaik, C. P. (1993). Ecological risk aversion in juvenile primates: Slow and steady wins the race. In Pereira, M., and Fairbanks, L. A. (Eds.), Juvenile Primates, Oxford University Press, Oxford, pp. 57-74.Google Scholar
  27. Johnson, M. L., and Gaines, M. S. (1990). Evolution of dispersal: Theoretical models and empirical tests using birds and mammals. Annu. Rev. Ecol. Syst. 21: 449-480.Google Scholar
  28. Jones, C. B. (1999). Why both sexes leave: Effects of habitat fragmentation on dispersal behavior. Endang. Spec. Update 16: 70-73.Google Scholar
  29. Korstjens, A. H. (2001). The importance of food characteristics and anti-predation strategies in determining ranging in three sympatric colobus species. In Korstjens, A. H. (ed.), The Mob, the Secret Sorority, and the Phantoms: An Analysis of the Socio-Ecological Strategies of the Three Colobines of Taï, PhD Thesis, Ipskamp, Utrecht, pp. 86-118.Google Scholar
  30. Korstjens, A. H., Nijssen, E. C., and Noë, R. (2001). Between-group relationships in Colobus polykomos polykomos. In Korstjens, A. H. (ed.), The Mob, the Secret Sorority, and the Phantoms: An Analysis of the Socio-Ecological Strategies of the Three Colobines of Taï, PhD Thesis, Ipskamp, Utrecht, pp. 21-32.Google Scholar
  31. Korstjens, A. H., and Noë, R. (2001). Choosy females and competitive males. The mating system of the olive colobus. In Korstjens, A. H. (ed.), The Mob, the Secret Sorority, and the Phantoms: An Analysis of the Socio-Ecological Strategies of the Three Colobines of Taï, PhD Thesis, Ipskamp, Utrecht, pp. 55-66.Google Scholar
  32. Korstjens, A. H., and Noë, R. (manuscript submitted for publication). The mating system of an exceptional primate, the olive colobus (Procolobus verus).Google Scholar
  33. Korstjens, A. H., Schippers, E. P., Nijssen, E. C., van Oirschot, B. M. A., Krebs, M., Bergman, K., Deffernez, C., and Paukert, C. (in press). The influence of food on the social organisation of three colobine species. In Noë, R., McGraw, S., and Zuberbühler, K. (Eds.), Monkeys of the Taï Forest. An African Primate Community, Cambridge Unviersity Press, Cambridge.Google Scholar
  34. McGraw, W. S. (1996). Cercopithecid locomotion, support use and support availability in the Tai Forest, Ivory Coast. Am. J. Phys. Anthropol. 100: 507-522.Google Scholar
  35. McGraw, W. S. (1998). Posture and support use of old world monkeys (Cercopithecidae): The influence of foraging strategies, activity patterns, and the spatial distribution of preferred food items. Am. J. Primatol. 46: 229-250.Google Scholar
  36. Moore, J. (1992). Dispersal, nepotism, and primate social behavior. Int. J. Primatol. 13: 361-378.Google Scholar
  37. Moore, J., and Ali, R. (1984). Are dispersal and inbreeding avoidance related? Anim. Behav. 32: 94-112.Google Scholar
  38. Newton, P. N., and Dunbar, R. I. M. (1994). Colobine monkey society. In Davies, A. G., and Oates, J. F. (Eds.), Colobine Monkeys, Cambridge University Press, Cambridge, pp. 311-346.Google Scholar
  39. Oates, J. F. (1988). The diet of the olive colobus monkey, Procolobus verus, in Sierra Leone. Int. J. Primatol. 9: 457-478.Google Scholar
  40. Oates, J. F. (1994). The natural history of African colobines. In Davies, A. G., and Oates, J. F. (Eds.), Colobine Monkeys, Cambridge University Press, Cambridge, pp. 75-128.Google Scholar
  41. Oates, J. F., and Whitesides, G. H. (1990). Association between olive colobus (Procolobus verus), diana guenons (Cercopithecus diana), and other forest monkeys in Sierra Leone. Am. J. Primatol. 21: 129-146.Google Scholar
  42. Packer, C. (1979). Inter-troop transfer and inbreeding avoidance in Papio anubis. Anim. Behav. 27: 1-36.Google Scholar
  43. Packer, C. (1985). Dispersal and inbreeding avoidance. Anim. Behav. 33: 676-678.Google Scholar
  44. Perrin, N. and Mazalov, V. (1999). Dispersal and inbreeding avoidance. Am. Nat. 154: 282-292.Google Scholar
  45. Pusey, A. E. (1987). Sex biased dispersal and inbreeding avoidance in birds and mammals. Trends Ecol. Evol. 2: 295-299.Google Scholar
  46. Shields, W. M. (1987). Dispersal and mating systems: Investigating their causal connections. In Chepko-Sade, B. D., and Halpin, Z. T. (Eds.), Mammalian Dispersal Patterns: The Effects of Social Structure on Population Genetics, The University of Chicago Press, Chicago, pp. 3-24.Google Scholar
  47. Starin, E. D. (1993). The kindness of strangers: In a West African forest, three monkey species make good neighbors. Nat. Hist. 102: 44-50.Google Scholar
  48. Steenbeek, R., Sterck, E. H. M., de Vries, H., and van Hooff, J. A. R. A. M. (2000). Costs and benefits of the one-male, age-graded and all-male phase in wild Thomas's langur groups. In Kappeler, P. M. (ed.), Primate Males: Causes and Consequences of Variation in Groupcomposition, Cambridge University Press, Cambridge, pp. 130-145.Google Scholar
  49. Sterck, E. H. M., and Korstjens, A. H. (2000). Female dispersal and infanticide avoidance in primates. In van Schaik, C. P., and Janson, C. H. (Eds.), Infanticide by Males and its Implications, Cambridge University Press, Cambridge, pp. 293-321.Google Scholar
  50. Stoorvogel, J. J. (1993). Gross Inputs and Outputs of Nutrients in Undisturbed Forest, Taï Area, Côte d'Ivoire. Veenman Drukkers, Wageningen.Google Scholar
  51. Trivers, R. L. (1972). Parental investment and sexual selection. In Campbell, B. (ed.), Sexual Selection and the Descent of Man, Heinemann Educational Books, London, pp. 136-179.Google Scholar
  52. van Hooff, J. A. R. A. M. (1988). Sociality in primates a compromise of ecological and social adaptation strategies. In Tartabini, A. and Genta, M. L. (Eds.), Perspectives in the Study of Primates, Cosenza, de Rose, pp. 9-23.Google Scholar
  53. van Schaik, C. P. (1989). The ecology of social relationships amongst female primates. In Standen, V., and Foley, R. A. (Eds.), Comparative Socioecology, Blackwell, Oxford, pp. 195-218.Google Scholar
  54. van Schaik, C. P., van Noordwijk, M. A., de Boer, R. J., and den Tonkelaar, I. (1983). The effects of group size on time budgets and social behaviour in wild long-tailed macaques (Macaca fascicularis). Behav. Ecol. Sociobiol. 13: 173-181.Google Scholar
  55. Waser, N. M., Audstad, S. N., and Keane, B. (1986). When should animals tolerate inbreeding? Am. Nat. 128: 529-537.Google Scholar
  56. Waser, N. M., Creel, S. R., and Lucas, J. R. (1996). Death and disappearance: Estimating mortality risks associated with philopatry and dispersal. Behav. Ecol. 5: 135-141.Google Scholar
  57. Wrangham, R. W., Gittleman, J. L., and Chapman, C. A. (1993). Constraints on group size in primates and carnivores: Population density and day-range as assays of exploitation competition. Behav. Ecol. Sociobiol. 32: 199-209.Google Scholar
  58. Zuberbühler, K., Noë, R., and Seyfarth, R. M. (1997). Diana monkeys long-distance calls: Messages for conspecifics and predators. Anim. Behav. 53: 589-604.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Amanda H. Korstjens
    • 1
    • 2
    • 3
  • Eva Ph. Schippers
    • 1
    • 2
    • 3
  1. 1.Behavioural Biology groupUtrecht UniversityUtrechtThe Netherlands.
  2. 2.Taï Monkey Project, CSRSAbidjan, Côte d'IvoireThe Netherlands
  3. 3.MPI SeewiesenStarnbergGermany

Personalised recommendations