Cancer and Metastasis Reviews

, Volume 22, Issue 4, pp 309–325

c-Met: Structure, functions and potential for therapeutic inhibition

  • Patrick C. Ma
  • Gautam Maulik
  • James Christensen
  • Ravi Salgia


Studies on signal transduction pathways have generated various promising molecular targets for therapeutic inhibition in cancer therapy. Receptor tyrosine kinases represent an important class of such therapeutic targets. c-Met is a receptor tyrosine kinase that has been shown to be overexpressed and/or mutated in a variety of malignancies. A number of c-Met activating mutations, many of which are located in the tyrosine kinase domain, have been detected in various solid tumors and have been implicated in invasion and metastasis of tumor cells. It is known that stimulation of c-Met via its natural ligand, hepatocyte growth factor (also known as scatter factor, HGF/SF) results in a plethora of biological and biochemical effects in the cell. Activation of c-Met signaling can lead to scattering, angiogenesis, proliferation, enhanced cell motility, invasion, and eventual metastasis. In this review, the role of c-Met dysregulation in tumor progression and metastasis is discussed in detail with particular emphasis on c-Met mutations. Moreover, we summarize current knowledge on various pathways of c-Met signal transduction, highlighting the central role in the cytoskeletal functions. In this summary is included recent data in our laboratory indicating that phosphorylation of focal adhesion proteins, such as paxillin, p125FAK, and PYK2, occurs in response to c-Met stimulation in lung cancer cells. Most importantly, current data on c-Met suggest that when mutated or overexpressed in malignant cells, c-Met would serve as an important therapeutic target.

c-Met hepatocyte growth factor signal transduction motility metastasis inhibitors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blume-Jensen P, Hunter, T: Oncogenic kinase signaling. Nature 411: 355–365, 2001Google Scholar
  2. 2.
    Longati P, Comoglio PM, Bardelli A: Receptor tyrosine kinases as therapeutic targets: The model of the MET oncogene. Curr Drug Targets 2: 41–55, 2001Google Scholar
  3. 3.
    Maulik G, Shrikhande A, Kijima T, Ma PC, Morrison PT, Salgia R: Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for ther-apeutic inhibition. Cytokine Growth Factor Rev 13: 41–59, 2002Google Scholar
  4. 4.
    Arteaga CL, Khuri F, Krystal G, Sebti S: Overview of rationale and clinical trials with signal transduction inhibitors in lungcancer. Semin Oncol 29: 15–26, 2002Google Scholar
  5. 5.
    Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, Vande Woude GF: Molecular cloning of a new transformingg ene from a chemically transformed human cell line. Nature 311: 29–33, 1984Google Scholar
  6. 6.
    Park M, Dean M, Cooper CS, Schmidt M, O'Brien SJ, Blair DG, Vande Woude GF: Mechanism of met oncogene activation. Cell 45: 895–904, 1986Google Scholar
  7. 7.
    Jeffers M, Rong S, Vande Woude GF: Enhanced tumorigenicity and invasion-metastasis by hepatocyte growth factor/scatter factor-met signaling in human cells concomitant with induction of the urokinase proteolysis network. Mol Cell Biol 16: 1115–1125, 1996Google Scholar
  8. 8.
    Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P, Scherer SW, ZhuangZ, Lubensky I, Dean M, Allikmets R, Chidambaram A, Bergerheim UR, Feltis JT, Casadevall C, Zamarron A, Bernues M, Richard S, Lips CJ, Walther MM, Tsui LC, Geil L, Orcutt ML, Stackhouse T, Zbar B, Lipan J, Slife L, Brauch H, Decker J, Niehans G, Hughson MD, Moch H, Storkel S, Lerman MI, Linehan WM: Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16: 68–73, 1997Google Scholar
  9. 9.
    Di Renzo MF, Narsimhan RP, Olivero M, Bretti S, Giordano S, Medico E, Gaglia P, Zara P, Comoglio PM: Expression of the Met/HGF receptor in normal and neoplastic human tissues. Oncogene 6: 1997–2003, 1991Google Scholar
  10. 10.
    Comoglio PM, Boccaccio C: The HGF receptor family: Unconventional signal transducers for invasive cell growth. Genes Cells 1: 347–354, 1996Google Scholar
  11. 11.
    Comoglio PM: Structure, biosynthesis and biochemical properties of the HGF receptor in normal and malignant cells. Exs 65: 131–165, 1993Google Scholar
  12. 12.
    Duh FM, Scherer SW, Tsui LC, Lerman MI, Zbar B, Schmidt L: Gene structure of the human MET protooncogene. Oncogene 15: 1583–1586, 1997Google Scholar
  13. 13.
    Liu Y: The human hepatocyte growth factor receptor gene: Complete structural organization and promoter characterization. Gene 215: 159–169, 1998Google Scholar
  14. 14.
    Seki T, Hagiya M, Shimonishi M, Nakamura T, Shimizu S: Organization of the human hepatocyte growth factor-encoding gene. Gene 102: 213–219, 1991Google Scholar
  15. 15.
    Mars WM, Zarnegar R, Michalopoulos GK: Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am J Pathol 143: 949–958, 1993Google Scholar
  16. 16.
    Lu Q, Lemke G: Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 293: 306–311, 2001Google Scholar
  17. 17.
    Maestrini E, Tamagnone L, Longati P, Cremona O, Gulisano M, Bione S, Tamanini F, Neel BG, Toniolo D, Comoglio PM: A family of transmembrane proteins with homology to the MET-hepatocyte growth factor receptor. Proc Natl Acad Sci USA 93: 674–678, 1996Google Scholar
  18. 18.
    Artigiani S, Comoglio PM, Tamagnone L: Plexins, semaphorins, and scatter factor receptors: A common root for cell guidance signals? IUBMB Life 48: 477–482, 1999Google Scholar
  19. 19.
    Tessier-Lavigne M, Goodman CS: The molecular biology of axon guidance. Science 274: 1123–1133, 1996Google Scholar
  20. 20.
    Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H, Chedotal A, WinbergML, Goodman CS, Poo M, Tessier-Lavigne M, Comoglio PM: Plexins are a large family of receptors for transmembrane, secreted, and GPIanchored semaphorins in vertebrates. Cell 99: 71–80, 1999Google Scholar
  21. 21.
    Tamagnone L, Comoglio PM: signaling by semaphorin receptors: Cell guidance and beyond. Trends Cell Biol 10: 377–383, 2000Google Scholar
  22. 22.
    Comoglio PM, Tamagnone L, Boccaccio C: Plasminogenrelated growth factor and semaphorin receptors: A gene superfamily controllinginvasive growth. Exp Cell Res 253: 88–99, 1999Google Scholar
  23. 23.
    Iwazawa T, Shiozaki H, Doki Y, Inoue M, Tamura S, Matsui S, Monden T, Matsumoto K, Nakamura T, Monden M: Primary human fibroblasts induce diverse tumor invasiveness: Involvement of HGF as an important paracrine factor. Jpn J Cancer Res 87: 1134–1142, 1996Google Scholar
  24. 24.
    Takai K, Hara J, Matsumoto K, Hosoi G, Osugi Y, Tawa A, Okada S, Nakamura T: Hepatocyte growth factor is constitutively produced by human bone marrow stromal cells and indirectly promotes hematopoiesis. Blood 89: 1560–1565, 1997Google Scholar
  25. 25.
    Hayashi S, Morishita R, Higaki J, Aoki M, Moriguchi A, Kida I, Yoshiki S, Matsumoto K, Nakamura T, Kaneda Y, Ogihara T: Autocrine-paracrine effects of overexpression of hepatocyte growth factor gene on growth of endothelial cells. Biochem Biophys Res Commun 220: 539–545, 1996Google Scholar
  26. 26.
    Yi S, Chen JR, Viallet J, Schwall RH, Nakamura T, Tsao MS: Paracrine effects of hepatocyte growth factor/scatter factor on non-small-cell lungcarcinoma cell lines. Br J Cancer 77: 2162–2170, 1998Google Scholar
  27. 27.
    Weimar IS, Miranda N, Muller EJ, Hekman A, Kerst JM, de Gast GC, Gerritsen WR: Hepatocyte growth factor/ scatter factor (HGF/SF) is produced by human bone marrow stromal cells and promotes proliferation, adhesion and survival of human hematopoietic progenitor cells (CD34+). Exp Hematol 26: 885–894, 1998Google Scholar
  28. 28.
    Nakashiro K, Okamoto M, Hayashi Y, Oyasu R: Hepatocyte growth factor secreted by prostate-derived stromal cells stimulates growth of androgen-independent human prostatic carcinoma cells. Am J Pathol 157: 795–803, 2000Google Scholar
  29. 29.
    Stella MC, Comoglio PM: HGF: A multifunctional growth factor controlling cell scattering. Int J Biochem Cell Biol 31: 1357–1362, 1999Google Scholar
  30. 30.
    Horiguchi N, Takayama H, Toyoda M, Otsuka T, Fukusato T, Merlino G, Takagi H, Mori M: Hepatocyte growth factor promotes hepatocarcinogenesis through c-Met autocrine activation and enhanced angiogenesis in transgenic mice treated with diethylnitrosamine. Oncogene 21: 1791–1799, 2002Google Scholar
  31. 31.
    Furge KA, Zhang YW, Vande Woude GF: Met receptor tyrosine kinase: Enhanced signaling through adapter proteins. Oncogene 19: 5582–5589, 2000Google Scholar
  32. 32.
    Petrelli A, Gilestro GF, Lanzardo S, Comoglio PM, Migone N, Giordano S: The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature 416: 187–190, 2002Google Scholar
  33. 33.
    Natali PG, Prat M, Nicotra MR, Bigotti A, Olivero M, Comoglio PM, Di Renzo MF: Overexpression of the met/ HGF receptor in renal cell carcinomas. Int J Cancer 69: 212–217, 1996Google Scholar
  34. 34.
    Olivero M, Rizzo M, Madeddu R, Casadio C, Pennacchietti S, Nicotra MR, Prat M, Maggi G, Arena N, Natali PG, Comoglio PM, Di Renzo MF: Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lungcarcinomas. Br J Cancer 74: 1862–1868, 1996Google Scholar
  35. 35.
    Porte H, Triboulet JP, Kotelevets L, Carrat F, Prevot S, Nordlinger B, DiGioia Y, Wurtz A, Comoglio P, Gespach C, Chastre E: Overexpression of stromelysin-3, BM-40/ SPARC, and MET genes in human esophageal carcinoma: Implications for prognosis. Clin Cancer Res 4: 1375–1382, 1998Google Scholar
  36. 36.
    Maulik G, Kijima T, Ma PC, Ghosh SK, Lin J, Shapiro GI, Schaefer E, Tibaldi E, Johnson BE, Salgia R: Modulation of the c-Met/hepatocyte growth factor pathway in small cell lungcancer. Clin Cancer Res 8: 620–627, 2002Google Scholar
  37. 37.
    Ramirez R, Hsu D, Patel A, Fenton C, Dinauer C, Tuttle RM, Francis GL: Over-expression of hepatocyte growth factor/scatter factor (HGF/SF) and the HGF/SF receptor (cMET) are associated with a high risk of metastasis and recurrence for children and youngadults with papillary thyroid carcinoma. Clin Endocrinol (Oxf) 53: 635–644, 2000Google Scholar
  38. 38.
    Hellman A, Zlotorynski E, Scherer SW, Cheung J, Vincent JB, Smith DI, Trakhtenbrot L, Kerem B: A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 1: 89–97, 2002Google Scholar
  39. 39.
    Ferracini R, Di Renzo MF, Scotlandi K, Baldini N, Olivero M, Lollini P, Cremona O, Campanacci M, Comoglio PM: The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene 10: 739–749, 1995Google Scholar
  40. 40.
    Di Renzo MF, Olivero M, Giacomini A, Porte H, Chastre E, Mirossay L, Nordlinger B, Bretti S, Bottardi S, Giordano S, Plebani M, Gespach C, Comoglio PM: Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res 1: 147–154, 1995Google Scholar
  41. 41.
    Di Renzo MF, Olivero M, Katsaros D, Crepaldi T, Gaglia P, Zola P, Sismondi P, Comoglio PM: Overexpression of the Met/HGF receptor in ovarian cancer. Int J Cancer 58: 658–662, 1994Google Scholar
  42. 42.
    Jeffers M, Fiscella M, Webb CP, Anver M, Koochekpour S, Vande Woude GF: The mutationally activated Met receptor mediates motility and metastasis. Proc Natl Acad Sci USA 95: 14417–14422, 1998Google Scholar
  43. 43.
    Schmidt L, Junker K, Weirich G, Glenn G, Choyke P, Lubensky I, ZhuangZ, Jeffers M, Vande Woude G, Neumann H, Walther M, Linehan WM, Zbar B: Two North American families with hereditary papillary renal carcinoma and identical novel mutations in the MET proto-oncogene. Cancer Res 58: 1719–1722, 1998Google Scholar
  44. 44.
    Schmidt L, Junker K, Nakaigawa N, Kinjerski T, Weirich G, Miller M, Lubensky I, Neumann HP, Brauch H, Decker J, Vocke C, Brown JA, Jenkins R, Richard S, Bergerheim U, Gerrard B, Dean M, Linehan WM, Zbar B: Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18: 2343–2350, 1999Google Scholar
  45. 45.
    Miller M, Ginalski K, LesyngB, Nakaigawa N, Schmidt L, Zbar B: Structural basis of oncogenic activation caused by point mutations in the kinase domain of the MET proto-oncogene: Modeling studies. Proteins 44: 32–43, 2001Google Scholar
  46. 46.
    Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F: Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 106: 745–757, 2001Google Scholar
  47. 47.
    Baxter RM, Secrist JP, Vaillancourt RR, Kazlauskas A: Full activation of the platelet-derived growth factor betareceptor kinase involves multiple events. J Biol Chem 273: 17050–17055, 1998Google Scholar
  48. 48.
    Irusta PM, DiMaio D: A single amino acid substitution in a WW-like domain of diverse members of the PDGF receptor subfamily of tyrosine kinases causes constitutive receptor activation. Embo J 17: 6912–6923, 1998Google Scholar
  49. 49.
    Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, Sonoda Y, Fujimoto T, Misawa S: Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 10: 1911–1918, 1996Google Scholar
  50. 50.
    Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, Sonoda Y, Abe T, Kahsima K, Matsuo Y, Naoe T: Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 11: 1605–1609, 1997Google Scholar
  51. 51.
    Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H, Naoe T: Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 19: 624–631, 2000Google Scholar
  52. 52.
    Zhao M, Kiyoi H, Yamamoto Y, Ito M, Towatari M, Omura S, Kitamura T, Ueda R, Saito H, Naoe T: In vivo treatment of mutant FLT3-transformed murine leukemia with a tyrosine kinase inhibitor. Leukemia 14: 374–378, 2000Google Scholar
  53. 53.
    Kelly LM, Yu JC, Boulton CL, Apatira M, Li J, Sullivan CM, Williams I, Amaral SM, Curley DP, Duclos N, NeubergD, Scarborough RM, Pandey A, Hollenbach S, Abe K, Lokker NA, Gilliland DG, Giese NA: CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell 1: 421–432, 2002Google Scholar
  54. 54.
    Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T, Gilliland DG, Griffin JD: Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 1: 433–443, 2002Google Scholar
  55. 55.
    Lee JH, Han SU, Cho H, Jennings B, Gerrard B, Dean M, Schmidt L, Zbar B, Vande Woude GF: A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene 19: 4947–4953, 2000Google Scholar
  56. 56.
    Soman NR, Wogan GN, Rhim JS: TPR-MET oncogenic rearrangement: Detection by polymerase chain reaction amplification of the transcript and expression in human tumor cell lines. Proc Natl Acad Sci USA 87: 738–742, 1990Google Scholar
  57. 57.
    Soman NR, Correa P, Ruiz BA, Wogan GN: The TPRMET oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. Proc Natl Acad Sci USA 88: 4892–4896, 1991Google Scholar
  58. 58.
    Vigna E, Gramaglia D, Longati P, Bardelli A, Comoglio PM: Loss of the exon encodingthe juxtamembrane domain is essential for the oncogenic activation of TPRMET. Oncogene 18: 4275–4281, 1999Google Scholar
  59. 59.
    Peschard P, Fournier TM, Lamorte L, Naujokas MA, Band H, Langdon WY, Park M: Mutation of the c-Cbl TKB domain bindingsite on the Met receptor tyrosine kinase converts it into a transformingprotein. Mol Cell 8: 995–1004, 2001Google Scholar
  60. 60.
    Lee CC, Yamada KM: Identification of a novel type of alternative splicingof a tyrosine kinase receptor. Juxtamembrane deletion of the c-met protein kinase C serine phosphorylation regulatory site. J Biol Chem 269: 19457–19461, 1994Google Scholar
  61. 61.
    Lee CC, Yamada KM: Alternatively spliced juxtamembrane domain of a tyrosine kinase receptor is a multifunctional regulatory site. Deletion alters cellular tyrosine phosphorylation pattern and facilitates binding of phosphatidylinositol-3-OH kinase to the hepatocyte growth factor receptor. J Biol Chem 270: 507–510, 1995Google Scholar
  62. 62.
    Modrek B, Lee C: A genomic view of alternative splicing. Nat Genet 30: 13–19, 2002Google Scholar
  63. 63.
    Brett D, Pospisil H, Valcarcel J, Reich J, Bork P: Alternative splicingand genome complexity. Nat Genet 30: 29–30, 2002Google Scholar
  64. 64.
    Comoglio PM: Pathway specificity for Met signaling. Nat Cell Biol 3: E161-E162, 2001Google Scholar
  65. 65.
    Comoglio PM, Trusolino L: Invasive growth: From development to metastasis. J Clin Invest 109: 857–862, 2002Google Scholar
  66. 66.
    Muller M, Morotti A, Ponzetto C: Activation of NFkappaB is essential for hepatocyte growth factor-mediated proliferation and tubulogenesis. Mol Cell Biol 22: 1060–1072, 2002Google Scholar
  67. 67.
    Wang X, DeFrances MC, Dai Y, Pediaditakis P, Johnson C, Bell A, Michalopoulos GK, Zarnegar R: A mechanism of cell survival: Sequestration of Fas by the HGF receptor Met. Mol Cell 9: 411–421, 2002Google Scholar
  68. 68.
    Birchmeier C, Gherardi E: Developmental roles of HGF/ SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 8: 404–410, 1998Google Scholar
  69. 69.
    Maina F, Casagranda F, Audero E, Simeone A, Comoglio PM, Klein R, Ponzetto C: Uncouplingof Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell 87: 531–542, 1996Google Scholar
  70. 70.
    Maina F, Klein R: Hepatocyte growth factor, a versatile signal for developing neurons. Nat Neurosci 2: 213–217, 1999Google Scholar
  71. 71.
    Weisberg E, Sattler M, Ewaniuk DS, Salgia R: Role of focal adhesion proteins in signal transduction and oncogenesis. Crit Rev Oncog 8: 343–358, 1997Google Scholar
  72. 72.
    Sattler M, Salgia R: Role of the adapter protein CRKL in signal transduction of normal hematopoietic and BCR/ABL-transformed cells. Leukemia 12: 637–644, 1998Google Scholar
  73. 73.
    Sattler M, Pisick E, Morrison PT, Salgia R: Role of the cytoskeletal protein paxillin in oncogenesis. Crit Rev Oncog11: 63–76, 2000Google Scholar
  74. 74.
    Salgia R, Li JL, Lo SH, Brunkhorst B, Kansas GS, Sobhany ES, Sun Y, Pisick E, Hallek M, Ernst T et al. Molecular cloningof human paxillin, a focal adhesion protein phosphorylated by P210BCR/ABL. J Biol Chem 270: 5039–5047, 1995Google Scholar
  75. 75.
    Parr C, Davies G, Nakamura T, Matsumoto K, Mason MD, Jiang WG: The HGF/SF-induced phosphorylation of paxillin, matrix adhesion, and invasion of prostate cancer cells were suppressed by NK4, an HGF/SF variant. Biochem Biophys Res Commun 285: 1330–1337, 2001Google Scholar
  76. 76.
    Turner CE: Paxillin interactions. J Cell Sci 113Pt 23: 4139–4140, 2000Google Scholar
  77. 77.
    Turner CE: Paxillin and focal adhesion signaling. Nat Cell Biol 2: E231–236, 2000Google Scholar
  78. 78.
    Fernandez-Valle C, Tang Y, Ricard J, Rodenas-Ruano A, Taylor A, Hackler E, Biggerstaff J, Iacovelli J: Paxillin binds schwannomin and regulates its density-dependent localization and effect on cell morphology. Nat Genet 31: 354–362, 2002Google Scholar
  79. 79.
    Schaller MD, Sasaki T: Differential signaling by the focal adhesion kinase and cell adhesion kinase beta. J Biol Chem 272: 25319–25325, 1997Google Scholar
  80. 80.
    Nobes CD, Hall A: Rho, rac and cdc42 GTPases: Regulators of actin structures, cell adhesion and motility. Biochem Soc Trans 23: 456–459, 1995Google Scholar
  81. 81.
    Nobes CD, Hall A: Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81: 53–62, 1995Google Scholar
  82. 82.
    Derman MP, Cunha MJ, Barros EJ, Nigam SK, Cantley LG: HGF-mediated chemotaxis and tubulogenesis require activation of the phosphatidylinositol 3-kinase. Am J Physiol 268: F1211–1217, 1995Google Scholar
  83. 83.
    Derman MP, Chen JY, Spokes KC, Songyang Z, Cantley LG: An 11-amino acid sequence from c-met initiates epithelial chemotaxis via phosphatidylinositol 3-kinase and phospholipase C. J Biol Chem 271: 4251–4255, 1996Google Scholar
  84. 84.
    Besser D, Bardelli A, Didichenko S, Thelen M, Comoglio PM, Ponzetto C, Nagamine Y: Regulation of the urokinase-type plasminogen activator gene by the oncogene Tpr-Met involves GRB2. Oncogene 14: 705–711, 1997Google Scholar
  85. 85.
    Dunsmore SE, Rubin JS, Kovacs SO, Chedid M, Parks WC, Welgus HG: Mechanisms of hepatocyte growth c-Met: Structure, functions and potential 323 factor stimulation of keratinocyte metalloproteinase production. J Biol Chem 271: 24576–24582, 1996Google Scholar
  86. 86.
    Wojta J, Nakamura T, Fabry A, Hufnagl P, Beckmann R, McGrath K, Binder BR: Hepatocyte growth factor stimulates expression of plasminogen activator inhibitor type 1 and tissue factor in HepG2 cells. Blood 84: 151–157, 1994Google Scholar
  87. 87.
    Gilmore AP, Burridge K: Regulation of vinculin binding to talin and actin by phosphatidyl-inositol–4–5-bisphosphate. Nature 381: 531–535, 1996Google Scholar
  88. 88.
    Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C: Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376: 768–771, 1995Google Scholar
  89. 89.
    Di Renzo MF, Olivero M, Martone T, Maffe A, Maggiora P, Stefani AD, Valente G, Giordano S, Cortesina G, Comoglio PM: Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene 19: 1547–1555, 2000Google Scholar
  90. 90.
    Dong G, Loukinova E, Chen Z, Gangi L, Chanturita TI, Liu ET, Van Waes C: Molecular profilingof transformed and metastatic murine squamous carcinoma cells by differential display and cDNA microarray reveals altered expression of multiple genes related to growth, apoptosis, angiogenesis, and the NF-kappaB signal pathway. Cancer Res 61: 4797–4808, 2001Google Scholar
  91. 91.
    Jeffers M, Rong S, Woude GF: Hepatocyte growth factor/ scatter factor-Met signaling in tumorigenicity and invasion/ metastasis. J Mol Med 74: 505–513, 1996Google Scholar
  92. 92.
    Comoglio PM, Boccaccio C: Scatter factors and invasive growth. Semin Cancer Biol 11: 153–165, 2001Google Scholar
  93. 93.
    Tuck AB, Park M, Sterns EE, Boag A, Elliott BE: Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am J Pathol 148: 225–232, 1996Google Scholar
  94. 94.
    Koochekpour S, Jeffers M, Rulong S, Taylor G, Klineberg E, Hudson EA, Resau JH, Vande Woude GF: Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 57: 5391–5398, 1997Google Scholar
  95. 95.
    Li G, Schaider H, Satyamoorthy K, Hanakawa Y, Hashimoto K, Herlyn M: Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor duringmelanoma development. Oncogene 20: 8125–8135, 2001Google Scholar
  96. 96.
    Giordano S, Bardelli A, Zhen Z, Menard S, Ponzetto C, Comoglio PM: A point mutation in the MET oncogene abrogates metastasis without affecting transformation. Proc Natl Acad Sci USA 94: 13868–13872, 1997Google Scholar
  97. 97.
    Bardelli A, Basile ML, Audero E, Giordano S, Wennstrom S, Menard S, Comoglio PM, Ponzetto C: Concomitant activation of pathways downstream of Grb2 and PI 3-kinase is required for MET-mediated metastasis. Oncogene 18: 1139–1146, 1999Google Scholar
  98. 98.
    Saucier C, Papavasiliou V, Palazzo A, Naujokas MA, Kremer R, Park M: Use of signal specific receptor tyrosine kinase oncoproteins reveals that pathways downstream from Grb2 or Shc are sufficient for cell transformation and metastasis. Oncogene 21: 1800–1811, 2002Google Scholar
  99. 99.
    Medico E, Gentile A, Lo Celso C, Williams TA, Gambarotta G, Trusolino L, Comoglio PM: Osteopontin is an autocrine mediator of hepatocyte growth factorinduced invasive growth. Cancer Res 61: 5861–5868, 2001Google Scholar
  100. 100.
    Yu Y, Merlino G: Constitutive c-Met signaling through a nonautocrine mechanism promotes metastasis in a transgenic transplantation model. Cancer Res 62: 2951–2956, 2002Google Scholar
  101. 101.
    Wang R, Ferrell LD, Faouzi S, Maher JJ, Bishop JM: Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol 153: 1023–1034, 2001Google Scholar
  102. 102.
    Christensen CR, Klingelhofer J, Tarabykina S, Hulgaard EF, Kramerov D, Lukanidin E: Transcription of a novel mouse semaphorin gene, M-semaH, correlates with the metastatic ability of mouse tumor cell lines. Cancer Res 58: 1238–1244, 1998Google Scholar
  103. 103.
    Kagoshima M, Ito T: Diverse gene expression and function of semaphorins in developinglung: Positive and negative regulatory roles of semaphorins in lung branchingmorphog enesis. Genes Cells 6: 559–571, 2001Google Scholar
  104. 104.
    Roche J, Boldog F, Robinson M, Robinson L, Varella-Garcia M, Swanton M, Waggoner B, Fishel R, Franklin W, Gemmill R, Drabkin H: Distinct 3p21.3 deletions in lungcancer and identification of a new human semaphorin. Oncogene 12: 1289–1297, 1996Google Scholar
  105. 105.
    Goshima Y, Ito T, Sasaki Y, Nakamura F: Semaphorins as signals for cell repulsion and invasion. J Clin Invest 109: 993–998, 2002Google Scholar
  106. 106.
    Giordano S, Corso S, Conrotto P, Artigiani S, Gilestro G, Barberis D, Tamagnone L, Comoglio PM: The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 4: 720–724, 2002Google Scholar
  107. 107.
    Otsuka T, Jakubczak J, Vieira W, Bottaro DP, Breckenridge D, Larochelle WJ, Merlino G: Disassociation of met-mediated biological responses in vivo: the natural hepatocyte growth factor/scatter factor splice variant NK2 antagonizes growth but facilitates metastasis. Mol Cell Biol 20: 2055–2065, 2000Google Scholar
  108. 108.
    Date K, Matsumoto K, Shimura H, Tanaka M, Nakamura T: HGF/NK4 is a specific antagonist for pleiotrophic actions of hepatocyte growth factor. FEBS Lett 420: 1–6, 1997Google Scholar
  109. 109.
    Parr C, Hiscox S, Nakamura T, Matsumoto K, JiangWG: Nk4, a new HGF/SF variant, is an antagonist to the influence of HGF/SF on the motility and invasion of colon cancer cells. Int J Cancer 85: 563–570, 2000Google Scholar
  110. 110.
    Tomioka D, Maehara N, Kuba K, Mizumoto K, Tanaka M, Matsumoto K, Nakamura T: Inhibition of growth, invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model. Cancer Res 61: 7518–7524, 2001Google Scholar
  111. 111.
    Mark MR, Lokker NA, Zioncheck TF, Luis EA, Godowski PJ: Expression and characterization of hepatocyte growth factor receptor-IgG fusion proteins. Effects of mutations in the potential proteolytic cleavage site on processing and ligand binding. J Biol Chem 267: 26166–26171, 1992Google Scholar
  112. 112.
    Michieli P, Basilico C, Pennacchietti S, Maffe A, Tamagnone L, Giordano S, Bardelli A, Comoglio PM: Mutant Met-mediated transformation is ligand-dependent and can be inhibited by HGF antagonists. Oncogene 18: 5221–5231, 1999Google Scholar
  113. 113.
    Bardelli A, Longati P, Williams TA, Benvenuti S, Comoglio PM: A peptide representing the carboxylterminal tail of the met receptor inhibits kinase activity and invasive growth. J Biol Chem 274: 29274–29281, 1999Google Scholar
  114. 114.
    Webb CP, Hose CD, Koochekpour S, Jeffers M, Oskarsson M, Sausville E, Monks A, Vande Woude GF: The geldanamycins are potent inhibitors of the hepatocyte growth factor/scatter factor-met-urokinase plasminogen activator-plasmin proteolytic network. Cancer Res 60: 342–349, 2000Google Scholar
  115. 115.
    Neckers L, Schulte TW, Mimnaugh E: Geldanamycin as a potential anti-cancer agent: Its molecular target and biochemical activity. Invest New Drugs 17: 361–373, 1999Google Scholar
  116. 116.
    Ottmann OG, Druker BJ, Sawyers CL, Goldman JM, Reiffers J, Silver RT, Tura S, Fischer T, Deininger MW, Schiffer CA, Baccarani M, Gratwohl A, Hochhaus A, Hoelzer D, Fernandes-Reese S, Gathmann I, Capdeville R, O'Brien SG: A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosomepositive acute lymphoid leukemias. Blood 100: 1965–1971, 2002Google Scholar
  117. 117.
    Mauro MJ, O'Dwyer M, Heinrich MC, Druker BJ: STI571: A paradigm of new agents for cancer therapeutics. J Clin Oncol 20: 325–334, 2002Google Scholar
  118. 118.
    Apperley JF, Gardembas M, Melo JV, Russell-Jones R, Bain BJ, Baxter EJ, Chase A, Chessells JM, Colombat M, Dearden CE, Dimitrijevic S, Mahon FX, Marin D, Nikolova Z, Olavarria E, Silberman S, Schultheis B, Cross NC, Goldman JM: Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med 347: 481–487, 2002Google Scholar
  119. 119.
    Heinrich MC, Blanke CD, Druker BJ, Corless CL: Inhibition of KIT tyrosine kinase activity: A novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol 20: 1692–1703, 2002Google Scholar
  120. 120.
    Salgia R, Sattler M: Molecular and cellular biology of small cell lungcancer. Seminars in Oncology 30: 57–71, 2003.Google Scholar
  121. 121.
    Morotti A, Mila S, Accornero P, Tagliabue E, Ponzetto C: K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene 21: 4885–4893, 2002Google Scholar
  122. 122.
    Liang HAJ, Laterra J, Maher VM, McCormick JJ: Inhibtion of human fibrosarcoma tumorigenecity by U1 small nuclear RNA/ribozyme targeting of c-Met expression. Abstract #73. Proceedings of AACR 2002, 42, 2001Google Scholar
  123. 123.
    Herynk MH TR, Abounader R, Laterra JJ, Gallick G, Radinsky R: Inhibtion of colorectal carcinoma metastases through ribozyme mediated downregulation of c-Met. Abstract #4235. Proceedings of the AACR 2001, 42, 2001Google Scholar
  124. 124.
    Herynk M, Abounader R, Laterra J, Radinsky R, Gallick GE: Inhibition of c-met signaling through ribozymemediated downregulation decreases tumorigenic growth and metastasis of colon tumor cell lines through a Srcmediated pathway. Abstract #5268. Proceedings of the AACR 2002, 2002Google Scholar
  125. 125.
    Kim JL ZH, Gu Y, Rose PE, Nunes JJ, Stover DR, Long AM: A high resolution crystal structure of the c-Met receptor tyrosine kinase domain: An aid for the rational design of kinase inhibitors. Abstract #4575. Proceedings of the AACR 2001, 42, 2001Google Scholar
  126. 126.
    Chan PC, Liang CC, Yu KC, Chang MC, Ho WL, Chen BH, Chen HC: Synergistic effect of focal adhesion kinase overexpression and hepatocyte growth factor stimulation on cell transformation. J Biol Chem 277: 50373–50379, 2002Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Patrick C. Ma
    • 1
    • 2
    • 3
  • Gautam Maulik
    • 1
    • 2
  • James Christensen
    • 4
  • Ravi Salgia
    • 1
    • 2
  1. 1.Department of Medical Oncology, Lowe Center for Thoracic Oncology, Dana-Farber Cancer InstituteBrigham and Women's HospitalUSA
  2. 2.Harvard Medical SchoolBoston
  3. 3.Department of Hematology/OncologyTufts-New England Medical CenterBoston
  4. 4.Sugen, Inc.South San Francisco

Personalised recommendations