Advertisement

Foundations of Physics

, Volume 33, Issue 2, pp 349–368 | Cite as

What Can the Quantum Liquid Say on the Brane Black Hole, the Entropy of an Extremal Black Hole, and the Vacuum Energy?

  • G. E. Volovik
Article

Abstract

Using quantum liquids one can simulate the behavior of the quantum vacuum in the presence of the event horizon. The condensed matter analogs demonstrate that in most cases the quantum vacuum resists formation of the horizon, and even if the horizon is formed different types of the vacuum instability develop, which are faster than the process of Hawking radiation. Nevertheless, it is possible to create the horizon on the quantum-liquid analog of the brane, where the vacuum life-time is long enough to consider the horizon as the quasistationary object. Using this analogy we calculate the Bekenstein entropy of the near-extremal and extremal black holes, which comes from the fermionic microstates in the region of the horizon—the fermion zero modes. We also discuss how the cancellation of the large cosmological constant follows from the thermodynamics of the vacuum.

effective gravity black hole entropy cancellation of cosmological constant instability of quantum vacuum simulation of brane black hole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. V. Babak and L. P. Grishchuk, “Finite-range gravity and its role in gravitational waves, black holes and cosmology”, gr-gc/0209006.Google Scholar
  2. 2.
    B. Holdom, “On the fate of singularities and horizons in higher derivative gravity”, hep-th/ 0206219.Google Scholar
  3. 3.
    J. Magueijo, Phys. Rev. D 63, 043502(2001).Google Scholar
  4. 4.
    W. G. Unruh, Phys. Rev. Lett. 46, 1351(1981)Google Scholar
  5. 5.
    G. E. Volovik, Phys. Rep. 351, 195(2001).Google Scholar
  6. 6.
    Sakagami Masa-aki and A. Ohashi, Progr. Theor. Phys. 107, 1267(2002).Google Scholar
  7. 7.
    G. E. Volovik, Universe in a Helium Droplet (Clarendon Press, Oxford, 2003).Google Scholar
  8. 8.
    A. D. Sakharov, Sov. Phys. Dokl. 12, 1040(1968).Google Scholar
  9. 9.
    M. Novello, M. Visser, and G. E. Volovik (Eds.), Artificial Black Holes (World Scientific, Singapore, 2002).Google Scholar
  10. 10.
    S. W. Hawking, Nature 248, 30(1974).Google Scholar
  11. 11.
    J. D. Bekenstein, Phys. Rev. D 7, 2333(1973).Google Scholar
  12. 12.
    P. Painleve, C. R. Acad. Sci. (Paris) 173, 677(1921)Google Scholar
  13. 13.
    G. Chapline, E. Hohlfeld, R. B. Laughlin, and D. I. Santiago, Phil. Mag. B 81, 235(2001).Google Scholar
  14. 14.
    G. W. Gibbons and R. E. Kallosh, Phys. Rev. D 51, 2839(1995).Google Scholar
  15. 15.
    S. W. Hawking, G. T. Horowitz, and S. F. Ross, Phys. Rev. D 51, 4302(1995).Google Scholar
  16. 16.
    Don N. Page, “Thermodynamics of near-extreme black holes”, hepth/0012020.Google Scholar
  17. 17.
    M. Visser, Class. Quantum Grav. 15, 1767(1998).Google Scholar
  18. 18.
    K. Martel and E. Poisson, Am. J. Phys. 69, 476(2001).Google Scholar
  19. 19.
    M. K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042(2000).Google Scholar
  20. 20.
    C. Doran, Phys. Rev. D 61, 067503(2000).Google Scholar
  21. 21.
    R. Blaauwgeers, V. B. Eltsov, G. Eska, A. P. Finne, R. P. Haley, M. Krusius, J. J. Ruohio, L. Skrbek, and G. E. Volovik, Phys. Rev. Lett. 89, 155301(2002).Google Scholar
  22. 22.
    G. E. Volovik, JETP Lett. 76, 240(2002).Google Scholar
  23. 23.
    R. Schützhold and W. G. Unruh, Phys. Rev. D 66, 044019(2002).Google Scholar
  24. 24.
    S. Corley and T. Jacobson, Phys. Rev. D 59, 124011(1999).Google Scholar
  25. 25.
    T. Padmanabhan, “Cosmological constant—the weight of the vacuum”, hep-th/0212290.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • G. E. Volovik
    • 1
    • 2
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyHUTFinland
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations