Journal of Bioenergetics and Biomembranes

, Volume 35, Issue 2, pp 157–168

Energy Conservation and Dissipation in Mitochondria Isolated from Developing Tomato Fruit of Ethylene-Defective Mutants Failing Normal Ripening: The Effect of Ethephon, A Chemical Precursor of Ethylene

  • Rachel Navet
  • Wieslawa Jarmuszkiewicz
  • Andrea Miyasaka Almeida
  • Claudine Sluse-Goffart
  • Francis E. Sluse
Article

Abstract

Alternative oxidase (AOX) and uncoupling protein (UCP) are present simultaneously in tomato fruit mitochondria. In a previous work, it has been shown that protein expression and activity of these two energy-dissipating systems exhibit large variations during tomato fruit development and ripening on the vine. It has been suggested that AOX and UCP could be responsible for the respiration increase at the end of ripening and that the cytochrome pathway could be implicated in the climacteric respiratory burst before the onset of ripening. In this study, the use of tomato mutants that fail normal ripening because of deficiencies in ethylene perception or production as well as the treatment of one selected mutant with a chemical precursor of ethylene have revealed that the bioenergetics of tomato fruit development and ripening is under the control of this plant hormone. Indeed, the evolution pattern of bioenergetic features changes with the type of mutation and with the introduction of ethylene into an ethylene-synthesis-deficient tomato fruit mutant during its induced ripening.

Alternative oxidase uncoupling protein mitochondria respiration tomato fruit development ethylene-defective mutants ethylene precursor treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Affourtit, C., Albury, M., Crichton, P. G., and Moore, A. L. (2002). FEBS Lett. 510, 121-126.Google Scholar
  2. Almeida, A. M., Jarmuszkiewicz, W., Khomsi, H., Arruda, P., Vercesi, A. E., and Sluse, F. E. (1999). Plant Physiol. 119, 1323-1329.Google Scholar
  3. Almeida, A. M., Navet, R., Jarmuszkiewicz, W., Vercesi, A. E., Sluse-Goffart, C. M., and Sluse F. E. (2002) J. Bioenerg. Biomembr., 34, 487-498.Google Scholar
  4. Andreyev, A. Y., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P. Tsofina, L. M., Volkov, N. L., and Vygodina, T. V. (1989). Eur. J. Biochem. 182, 585-592.Google Scholar
  5. Beadle, N. C. W. (1937). Aust. J. Exp. Biol. Med. Sci. 15, 173-189.Google Scholar
  6. Bergevin, M., L'Heureux, G. P., Thompson, J. E., and Willemot, C. (1993). Physiol. Plant. 87, 522-527.Google Scholar
  7. Biale, J. B., and Young, R. E. (1981). Annu. Proceed. Phytochem. Soc. Eur. 19, 1-37.Google Scholar
  8. Bleecker, A. B., and Schaller, G. E. (1996). Plant Physiol. 111, 653-659.Google Scholar
  9. Borecky, J., Maia, I. G., Costa, A. D. T., Jezek, P., Chaimovich, H., de Andrade P. B. M., Vercesi, A. E., and Arruda, P. (2001). FEBS Lett. 505, 240-244.Google Scholar
  10. Brady, C. J. (1987). Annu. Rev. Plant Physiol. 38, 155-178.Google Scholar
  11. Buescher, R. W. (1977). Hort Sci. 12, 315-316.Google Scholar
  12. Considine, M. J., Daley, D. O., and Whelan, J. (2001). Plant Physiol. 126, 1619-1629.Google Scholar
  13. Folch, J., Lees, M., and Sloane-Stanley, G. H. (1957). J. Biol. Chem. 226, 497-509.Google Scholar
  14. Giovannoni, J. J. (2001). Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 52, 725-749.Google Scholar
  15. Gornall, A. G., Bardawill, C. J., and Dawid, M. M. (1949). J. Biol. Chem. 177, 751-757.Google Scholar
  16. Gray, J. E., Picton, S., Giovannoi, J. J., and Grierson, D. (1994). Plant Cell Environ. 17, 557-571.Google Scholar
  17. Herner, R. C., and Sink, K. C., Jr (1973). Plant Physiol. 52, 38-42.Google Scholar
  18. Holtzapffel, R., Finnegan, P. M., Millar, A. H., Badger, M. R., and Day, D. A. (2002). Funct. Plant Biol. 29, 827-834.Google Scholar
  19. Hua, J., and Meyerowitz, E. M. (1998). Cell 94, 261-271.Google Scholar
  20. Jarmuszkiewicz, W., Almeida, A. M., Sluse-Goffart, C. M., Sluse, F. E., and Vercesi, A. E. (2000). J. Biol. Chem. 275, 13315-13320.Google Scholar
  21. Jezek, P., Costa, A. D. T., and Vercesi, A. E. (1997). J. Biol. Chem. 272, 24272-24278.Google Scholar
  22. Jezek, P., Engostová, H., žáckova, M., Vercesi, A. E., Costa, A. D. T., Arruda, P., and Garlid, K. D. (1998). Biochem. Biophys. Acta 1365, 319-327.Google Scholar
  23. Kowaltowski, A. J., Costa, A. D. T., and Vercesi, A. E. (1998). FEBS Lett. 425, 213-216.Google Scholar
  24. Lanahan, M. B., Yen, H.-C., Giovannoni, J. J., and Klee, H. J. (1994). Plant Cell 6, 521-530.Google Scholar
  25. Lashbrook, C. C., Tieman, D. M., and Klee, H. J. (1998). Plant J. 15, 243-252.Google Scholar
  26. Leliévre, J.-M., Latche, A., Jones, B., Bouzayen, M., and Pech, J.-C. (1997). Physiol. Plant. 101, 727-739.Google Scholar
  27. Lincoln, J. E., and Fischer, R. L. (1988). Mol. Gen. Genet. 212, 71-75.Google Scholar
  28. Lyons, J. M., Pratt, H. K. (1963). Am. Soc. Hort. Sci. 84, 491-500.Google Scholar
  29. Maxwell, D. P., Wang, Y., and McIntosh, L. (1999). Proc. Natl. Acad. Sci. U.S.A. 96, 8271-8276.Google Scholar
  30. Meeuse, B. J. D. (1975). Annu. Rev. Plant Physiol. 26, 117-126.Google Scholar
  31. Mizrahi, Y., Dostal, H. C., and Cherry, J. H. (1975). HortSci. 10, 414-415.Google Scholar
  32. Piechulla, B., Glick, R. E., Bahl, H., Melis, A., and Gruissem, W. (1987). Plant Physiol. 84, 911-917.Google Scholar
  33. Popov, V. N., Simonian, R. A., Skulachev, V. P., and Starcov, A. A. (1997). FEBS Lett. 415, 87-90.Google Scholar
  34. Ricquier, D., and Bouillaud, F. (2000). Biochem. J. 345, 161-179.Google Scholar
  35. Sluse, F. E., Almeida, A. M., Jarmuszkiewicz, W., and Vercesi, A. E. (1998). FEBS Lett 433, 237-240.Google Scholar
  36. Sluse, F. E., and Jarmuszkiewicz, W. (1998). Braz. J. Med. Biol. Res. 31, 733-747.Google Scholar
  37. Sluse F. E., and Jarmuszkiewicz, W. (2000). Braz. J. Med. Biol. Res 33, 259-268.Google Scholar
  38. Sluse F. E., and Jarmuszkiewicz, W. (2002). FEBS Lett. 510, 117-120.Google Scholar
  39. Streptanova, A. N., and Ecker, J. R. (2000). Curr. Opin. Plant Biol. 3, 353-360.Google Scholar
  40. Tieman, D. M., and Klee, H. J. (1999). Plant Physiol. 120, 165-172.Google Scholar
  41. Tieman, D. M., Taylor, M. G., Ciardi, J. A., and Klee, H. (2000). Proc. Natl. Acad. Sci. 97, 5663-5668.Google Scholar
  42. Tigchelaar, E. C., McGlasson, W. B., and Buescher, R. W. (1978). HortSci. 13, 508-513.Google Scholar
  43. Vanlerberghe, G. C., and McIntosh, L. (1997). Annu. Rev. Plant Physiol. Mol. Biol. 48, 703-734.Google Scholar
  44. Vercesi, A. E., Martins, I. S., Silva, M. A. P., Leite, H. M. F., Cuccovia, I. M., and Chaimovich, H. (1995). Nature, 375, 24Google Scholar
  45. Wieckowski, M., and Wojtczak, L. (1997). Biochem. Biophys. Res. Commun. 232, 414-417.Google Scholar
  46. Yang, S. F., and Hoffman, N. E. (1984). Annu. Rev. Plant Physiol. 35, 155-189.Google Scholar
  47. Zackova, M., Kramer, R., and Jezek, P. (2000). Int. J. Biochem. Cell Biol. 32, 499-508.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Rachel Navet
    • 1
  • Wieslawa Jarmuszkiewicz
    • 2
  • Andrea Miyasaka Almeida
    • 1
  • Claudine Sluse-Goffart
    • 1
  • Francis E. Sluse
    • 1
  1. 1.Laboratory of Bioenergetics, Department of Life Sciences, Institute of Chemistry B6cUniversity of Liège, Sart-TilmanLiègeBelgium
  2. 2.Department of BioenergeticsAdam Mickiewicz UniversityPoznanPoland

Personalised recommendations