Cancer and Metastasis Reviews

, Volume 22, Issue 4, pp 359–374 | Cite as

FAK regulates biological processes important for the pathogenesis of cancer

  • Veronica Gabarra-Niecko
  • Michael D. SchallerEmail author
  • Jill M. Dunty


Since its initial discovery as a substrate and binding partner for the Src oncogene, a role for the focal adhesion kinase (FAK) in cancer has been speculated. In this review the clinical evidence correlating FAK overexpression with cancer and the experimental evidence demonstrating that FAK can control some phenotypes associated with cancer will be discussed. In addition, the emerging theme of interactions between the FAK and growth factor signaling pathways will be described. The evidence presented in this review provides a compelling case for a role for FAK in the pathology of human cancer.

focal adhesion kinase signaling cancer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kanner SB, Reynolds AB, Vines RR, Parsons JT: Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. Proc Natl Acad Sci USA 87: 3328–3332, 1990Google Scholar
  2. 2.
    Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT: pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci USA 89: 5192–5196, 1992Google Scholar
  3. 3.
    Cobb BS, Schaller MD, Leu TH, Parsons JT: Stable association of pp60src and pp59fyn with the focal adhesion-associated protein tyrosine kinase, pp125FAK. Mol Cell Biol 14: 147–155, 1994Google Scholar
  4. 4.
    Weiner TM, Liu ET, Craven RJ, Cance WG: Expression of growth factor receptors, the focal adhesion kinase, and other tyrosine kinases in human soft tissue tumors. Ann Surg Oncol 1: 18–27, 1994Google Scholar
  5. 5.
    Fiedorek FT Jr., Kay ES: Mapping of the focal adhesion kinase (Fadk) gene to mouse chromosome 15 and human chromosome 8. Mamm Genome 6: 123–126, 1995Google Scholar
  6. 6.
    Agochiya M, Brunton VG, Owens DW, Parkinson EK, Paraskeva C, Keith WN, Frame MC: Increased dosage and amplification of the focal adhesion kinase gene in human cancer cells. Oncogene 18: 5646–5653, 1999Google Scholar
  7. 7.
    Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T: Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377: 539–544, 1995Google Scholar
  8. 8.
    Schaller MD: Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta 1540: 1–21, 2001Google Scholar
  9. 9.
    Schlaepfer DD, Hauck CR, Sieg DJ: Signaling through focal adhesion kinase. Prog Biophys Mol Biol 71: 435–478, 1999Google Scholar
  10. 10.
    Ruoslahti E: Fibronectin and its integrin receptors in cancer. Adv Cancer Res 76: 1–20, 1999Google Scholar
  11. 11.
    Mizejewski GJ: Role of integrins in cancer: Survey of expression patterns. Proc Soc Exp Biol Med 222: 124–138, 1999Google Scholar
  12. 12.
    Sanders RJ, Mainiero F, Giancotti FG: The role of integrins in tumorigenesis and metastasis. Cancer Invest 16: 329–344, 1998Google Scholar
  13. 13.
    Zheng DQ, Woodard AS, Fornaro M, Tallini G, Languino LR: Prostatic carcinoma cell migration via alpha(v)beta3 integrin is modulated by a focal adhesion kinase pathway. Cancer Res 59: 1655–1664, 1999Google Scholar
  14. 14.
    Schaller MD, Otey CA, Hildebrand JD, Parsons JT: Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J Cell Biol 130: 1181–1187, 1995Google Scholar
  15. 15.
    Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD: FAK integrates growthfactor and integrin signals to promote cell migration. Nat Cell Biol 2: 249–256, 2000Google Scholar
  16. 16.
    Golubovskaya V, Beviglia L, Xu LH, Earp III HS, Craven R, Cance W: Dual inhibition of focal adhesion kinase and epidermal growth factor receptor pathways cooperatively induces death receptor-mediated apoptosis in human breast cancer cells. J Biol Chem 277: 38978–38987, 2002Google Scholar
  17. 17.
    Chen R, Kim O, Li M, Xiong X, Guan JL, Kung HJ, Chen H, Shimizu Y, Qiu Y: Regulation of the PH-domain-containing tyrosine kinase Etk by focal adhesion kinase through the FERM domain. Nat Cell Biol 3: 439–444, 2001Google Scholar
  18. 18.
    Poullet P, Gautreau A, Kadare G, Girault JA, Louvard D, Arpin M: Ezrin interacts with focal adhesion kinase and induces its activation independently of cell-matrix adhesion. J Biol Chem 276: 37686–37691, 2001Google Scholar
  19. 19.
    Schaller MD: Paxillin: A focal adhesion-associated adaptor protein. Oncogene 20: 6459–6472, 2001Google Scholar
  20. 20.
    O'Neill GM, Fashena SJ, Golemis EA: Integrin signaling: A new Cas(t) of characters enters the stage. Trends Cell Biol 10: 111–119, 2000Google Scholar
  21. 21.
    Frame MC: Src in cancer: Deregulation and consequences for cell behavior. Biochim Biophys Acta 1602: 114–130, 2002Google Scholar
  22. 22.
    Biscardi JS, Tice DA, Parsons SJ: c-Src, receptor tyrosine kinases, and human cancer. Adv Cancer Res 76: 61–119, 1999Google Scholar
  23. 23.
    Schwartz MA, Ginsberg MH: Networks and crosstalk: Integrin signaling spreads. Nat Cell Biol 4: E65-E68, 2002Google Scholar
  24. 24.
    Renshaw MW, Price LS, Schwartz MA: Focal adhesion kinase mediates the integrin signaling requirement for growth factor activation of MAP kinase. J Cell Biol 147: 611–618, 1999Google Scholar
  25. 25.
    Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L, Liu ET, Cance WG: Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res 55: 2752–2755, 1995Google Scholar
  26. 26.
    Cance WG, Harris JE, Iacocca MV, Roche E, Yang X, Chang J, Simkins S, Xu L: Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: Correlation with preinvasive and invasive phenotypes. Clin Cancer Res 6: 2417–2423, 2000Google Scholar
  27. 27.
    Su JM, Gui L, Zhou YP, Zha XL: Expression of focal adhesion kinase and alpha5 and beta1 integrins in carcinomas and its clinical significance. World J Gastroenterol 8: 613–618, 2002Google Scholar
  28. 28.
    Han NM, Fleming RY, Curley SA, Gallick GE: Overexpression of focal adhesion kinase (p125FAK) in human colorectal carcinoma liver metastases: Independence from c-src or c-yes activation. Ann Surg Oncol 4: 264–268, 1997Google Scholar
  29. 29.
    Ayaki M, Komatsu K, Mukai M, Murata K, Kameyama M, Ishiguro S, Miyoshi J, Tatsuta M, Nakamura H: Reduced expression of focal adhesion kinase in liver metastases compared with matched primary human colorectal adenocarcinomas. Clin Cancer Res 7: 3106–3112, 2001Google Scholar
  30. 30.
    Owens LV, Xu L, Dent GA, Yang X, Sturge GC, Craven RJ, Cance WG: Focal adhesion kinase as a marker of invasive potential in differentiated human thyroid cancer. Ann Surg Oncol 3: 100–105, 1996Google Scholar
  31. 31.
    Tremblay L, Hauck W, Aprikian AG, Begin LR, Chapdelaine A, Chevalier S: Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int J cancer 68: 164–171, 1996Google Scholar
  32. 32.
    Rovin JD, Frierson HF Jr., Ledinh W, Parsons JT, Adams RB: Expression of focal adhesion kinase in normal and pathologic human prostate tissues. Prostate 53: 124–132, 2002Google Scholar
  33. 33.
    Kornberg LJ: Focal adhesion kinase expression in oral cancers. Head Neck 20: 634–639, 1998Google Scholar
  34. 34.
    Judson PL, He X, Cance WG, Van Le L: Overexpression of focal adhesion kinase, a protein tyrosine kinase, in ovarian carcinoma. Cancer 86: 1551–1556, 1999Google Scholar
  35. 35.
    Zagzag D, Friedlander DR, Margolis B, Grumet M, Semenza GL, Zhong H, Simons JW, Holash J, Wiegand SJ, Yancopoulos GD: Molecular events implicated in brain tumor angiogenesis and invasion. Pediatr Neurosurg 33: 49–55, 2000Google Scholar
  36. 36.
    Wang D, Grammer JR, Cobbs CS, Stewart JE Jr., Liu Z, Rhoden R, Hecker TP, Ding Q, Gladson CL: p125 focal adhesion kinase promotes malignant astrocytoma cell proliferation in vivo. J Cell Sci 113Pt 23: 4221–4230, 2000Google Scholar
  37. 37.
    Jones G, Machado J Jr., Tolnay M, Merlo A: PTEN-independent induction of caspase-mediated cell death and reduced invasion by the focal adhesion targeting domain (FAT) in human astrocytic brain tumors which highly express focal adhesion kinase (FAK). Cancer Res 61: 5688–5691, 2001Google Scholar
  38. 38.
    Hecker TP, Grammer JR, Gillespie GY, Stewart J Jr., Gladson CL: Focal adhesion kinase enhances signaling through the Shc/extracellular signal-regulated kinase pathway in anaplastic astrocytoma tumor biopsy samples. Cancer Res 62: 2699–2707, 2002Google Scholar
  39. 39.
    Weiner TM, Liu ET, Craven RJ, Cance WG: Expression of focal adhesion kinase gene and invasive cancer. Lancet 342: 1024–1025, 1993Google Scholar
  40. 40.
    Miyasaka Y, Enomoto N, Nagayama K, Izumi N, Marumo F, Watanabe M, Sato C: Analysis of differentially expressed genes in human hepatocellular carcinoma using suppression subtractive hybridization. Br J Cancer 85: 228–234, 2001Google Scholar
  41. 41.
    Chan PY, Kanner SB, Whitney G, Aruffo A: A transmembrane-anchored chimeric focal adhesion kinase is constitutively activated and phosphorylated at tyrosine residues identical to pp125FAK. J Biol Chem 269: 20567–20574, 1994Google Scholar
  42. 42.
    Richardson A, Parsons T: A mechanism for regulation of the adhesion-associated proteintyrosine kinase pp125FAK. Nature 380: 538–540, 1996Google Scholar
  43. 43.
    Xu LH, Yang X, Craven RJ, Cance WG: The COOH-terminal domain of the focal adhesion kinase induces loss of adhesion and cell death in human tumor cells. Cell Growth Differ 9: 999–1005, 1998Google Scholar
  44. 44.
    Maung K, Easty DJ, Hill SP, Bennett DC: Requirement for focal adhesion kinase in tumor cell adhesion. Oncogene 18: 6824–6828, 1999Google Scholar
  45. 45.
    Xu LH, Owens LV, Sturge GC, Yang X, Liu ET, Craven RJ, Cance WG: Attenuation of the expression of the focal adhesion kinase induces apoptosis in tumor cells. Cell Growth Differ 7: 413–418, 1996Google Scholar
  46. 46.
    Xu LH, Yang X, Bradham CA, Brenner DA, Baldwin AS Jr., Craven RJ, Cance WG: The focal adhesion kinase suppresses transformation-associated, anchorage-independent apoptosis in human breast cancer cells. Involvement of death receptor-related signaling pathways. J Biol Chem 275: 30597–30604, 2000Google Scholar
  47. 47.
    Carragher NO, Fincham VJ, Riley D, Frame MC: Cleavage of focal adhesion kinase by different proteases during SRC-regulated transformation and apoptosis. Distinct roles for calpain and caspases. J Biol Chem 276: 4270–4275, 2001Google Scholar
  48. 48.
    Carragher NO, Westhoff MA, Riley D, Potter DA, Dutt P, Elce JS, Greer PA, Frame MC: v-Src-induced modulation of the calpain-calpastatin proteolytic system regulates transformation. Mol Cell Biol 22: 257–269, 2002Google Scholar
  49. 49.
    Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY: Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 134: 793–799, 1996Google Scholar
  50. 50.
    Chan PC, Liang CC, Yu KC, Chang MC, Ho WL, Chen BH, Chen HC: Synergistic effect of focal adhesion kinase overexpression and hepatocyte growth factor stimulation on cell transformation. J Biol Chem 277: 50373–50379, 2002Google Scholar
  51. 51.
    Leyton J, Garcia-Marin LJ, Tapia JA, Jensen RT, Moody TW: Bombesin and gastrin releasing peptide increase tyrosine phosphorylation of focal adhesion kinase and paxillin in non-small cell lung cancer cells. Cancer Lett 162: 87–95, 2001Google Scholar
  52. 52.
    Slack JK, Adams RB, Rovin JD, Bissonette EA, Stoker CE, Parsons JT: Alterations in the focal adhesion kinase/ Src signal transduction pathway correlate with increased migratory capacity of prostate carcinoma cells. Oncogene 20: 1152–1163, 2001Google Scholar
  53. 53.
    Hauck CR, Sieg DJ, Hsia DA, Loftus JC, Gaarde WA, Monia BP, Schlaepfer DD: Inhibition of focal adhesion kinase expression or activity disrupts epidermal growth factor-stimulated signaling promoting the migration of invasive human carcinoma cells. Cancer Res 61: 7079–7090, 2001Google Scholar
  54. 54.
    Hemler ME: Specific tetraspanin functions. J Cell Biol 155: 1103–1107, 2001Google Scholar
  55. 55.
    Kohno M, Hasegawa H, Miyake M, Yamamoto T, Fujita S: CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase. Int J Cancer 97: 336–343, 2002Google Scholar
  56. 56.
    Li X, Regezi J, Ross FP, Blystone S, Ilic D, Leong SP, Ramos DM: Integrin alphavbeta3 mediates K1735 murine melanoma cell motility in vivo and in vitro. J Cell Sci 114: 2665–2672, 2001Google Scholar
  57. 57.
    Jones G, Machado J Jr., Merlo A: Loss of focal adhesion kinase (FAK) inhibits epidermal growth factor receptor-dependent migration and induces aggregation of nh(2)-terminal FAK in the nuclei of apoptotic glioblastoma cells. Cancer Res 61: 4978–4981, 2001Google Scholar
  58. 58.
    Legrand C, Gilles C, Zahm JM, Polette M, Buisson AC, Kaplan H, Birembaut P, Tournier JM: Airway epithelial cell migration dynamics. MMP-9 role in cell-extracellular matrix remodeling. J Cell Biol 146: 517–529, 1999Google Scholar
  59. 59.
    Shibata K, Kikkawa F, Nawa A, Thant AA, Naruse K, Mizutani S, Hamaguchi M: Both focal adhesion kinase and c-Ras are required for the enhanced matrix metalloproteinase 9 secretion by fibronectin in ovarian cancer cells. Cancer Res 58: 900–903, 1998Google Scholar
  60. 60.
    Sein TT, Thant AA, Hiraiwa Y, Amin AR, Sohara Y, Liu Y, Matsuda S, Yamamoto T, Hamaguchi M: A role for FAK in the concanavalin A-dependent secretion of matrix metalloproteinase-2 and-9. Oncogene 19: 5539–5542, 2000Google Scholar
  61. 61.
    Abdel-Ghany M, Cheng HC, Elble RC, Pauli BU: Focal adhesion kinase activated by beta 4 integrin ligation to mCLCA1 mediates early metastatic growth. J Biol Chem 277: 34391–34400, 2002Google Scholar
  62. 62.
    McLean GW, Brown K, Arbuckle MI, Wyke AW, Pikkarainen T, Ruoslahti E, Frame MC: Decreased focal adhesion kinase suppresses papilloma formation during experimental mouse skin carcinogenesis. Cancer Res 61: 8385–8389, 2001Google Scholar
  63. 63.
    Gabarra-Niecko V, Keely PJ, Schaller MD: Characterization of an activated mutant of focal adhesion kinase: 'superFAK'. Biochem J 365: 591–603, 2002Google Scholar
  64. 64.
    Aguirre Ghiso JA: Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene 21: 2513–2524, 2002Google Scholar
  65. 65.
    Yamamura S, Hakomori S, Wada A, Igarashi Y: Sphingosine-1-phosphate inhibits haptotactic motility by overproduction of focal adhesion sites in B16 melanoma cells through EDG-induced activation of Rho. Ann NY Acad Sci 905: 301–307, 2000Google Scholar
  66. 66.
    Nurcombe V, Smart CE, Chipperfield H, Cool SM, Boilly B, Hondermarck H: The proliferative and migratory activities of breast cancer cells can be differentially regulated by heparan sulfates. J Biol Chem 275: 30009–30018, 2000Google Scholar
  67. 67.
    Lin VC, Ng EH, Aw SE, Tan MG, Ng EH, Bay BH: Progesterone induces focal adhesion in breast cancer cells MDA-MB-231 transfected with progesterone receptor complementary DNA. Mol Endocrinol 14: 348–358, 2000Google Scholar
  68. 68.
    Ignatoski KM, Ethier SP: Constitutive activation of pp125fak in newly isolated human breast cancer cell lines. Breast Cancer Res Treat 54: 173–182, 1999Google Scholar
  69. 69.
    Ignatoski KM, Maehama T, Markwart SM, Dixon JE, Livant DL, Ethier SP: ERBB-2 overexpression confers PI 3’ kinase-dependent invasion capacity on human mammary epithelial cells. Br J Cancer 82: 666–674, 2000Google Scholar
  70. 70.
    Brunton VG, Ozanne BW, Paraskeva C, Frame MC: A role for epidermal growth factor receptor, c-Src and focal adhesion kinase in an in vitro model for the progression of colon cancer. Oncogene 14: 283–293, 1997Google Scholar
  71. 71.
    Lu Z, Jiang G, Blume-Jensen P, Hunter T: Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Mol Cell Biol 21: 4016–4031, 2001Google Scholar
  72. 72.
    Beviglia L, Matsumoto K, Lin CS, Ziober BL, Kramer RH: Expression of the c-Met/HGF receptor in human breast carcinoma: Correlation with tumor progression. Int J Cancer 74: 301–309, 1997Google Scholar
  73. 73.
    Ferracini R, Di Renzo MF, Scotlandi K, Baldini N, Olivero M, Lollini P, Cremona O, Campanacci M, Comoglio PM: The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene 10: 739–749, 1995Google Scholar
  74. 74.
    Di Renzo MF, Poulsom R, Olivero M, Comoglio PM, Lemoine NR: Expression of the Met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res 55: 1129–1138, 1995Google Scholar
  75. 75.
    Di Renzo MF, Olivero M, Giacomini A, Porte H, Chastre E, Mirossay L, Nordlinger B, Bretti S, Bottardi S, Giordano S: Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res 1: 147–154, 1995Google Scholar
  76. 76.
    Giordano S, Bardelli A, Zhen Z, Menard S, Ponzetto C, Comoglio PM: A point mutation in the MET oncogene abrogates metastasis without affecting transformation. Proc Natl Acad Sci USA 94: 13868–13872, 1997Google Scholar
  77. 77.
    Matsumoto K, Matsumoto K, Nakamura T, Kramer RH: Hepatocyte growth factor/scatter factor induces tyrosine phosphorylation of focal adhesion kinase (p125FAK) and promotes migration and invasion by oral squamous cell carcinoma cells. J Biol Chem 269: 31807–31813, 1994Google Scholar
  78. 78.
    Chen HC, Chan PC, Tang MJ, Cheng CH, Chang TJ: Tyrosine phosphorylation of focal adhesion kinase stimulated by hepatocyte growth factor leads to mitogenactivated protein kinase activation. J Biol Chem 273: 25777–25782, 1998Google Scholar
  79. 79.
    Beviglia L, Kramer RH: HGF induces FAK activation and integrin-mediated adhesion in MTLn3 breast carcinoma cells. Int J Cancer 83: 640–649, 1999Google Scholar
  80. 80.
    Maulik G, Kijima T, Ma PC, Ghosh SK, Lin J, Shapiro GI, Schaefer E, Tibaldi E, Johnson BE, Salgia R: Modulation of the c-Met/hepatocyte growth factor pathway in small cell lung cancer. Clin Cancer Res 8: 620–627, 2002Google Scholar
  81. 81.
    Rahimi N, Tremblay E, McAdam L, Park M, Schwall R, Elliott B: Identification of a hepatocyte growth factor autocrine loop in a murine mammary carcinoma. Cell Growth Differ 7: 263–270, 1996Google Scholar
  82. 82.
    Nakaigawa N, Weirich G, Schmidt L, Zbar B: Tumorigenesis mediated by MET mutant M1268T is inhibited by dominant-negative Src. Oncogene 19: 2996–3002, 2000Google Scholar
  83. 83.
    Whitney GS, Chan PY, Blake J, Cosand WL, Neubauer MG, Aruffo A, Kanner SB: Human T and B lymphocytes express a structurally conserved focal adhesion kinase, pp125FAK. DNA Cell Biol 12: 823–830, 1993Google Scholar
  84. 84.
    Jenq W, Cooper DR, Ramirez G: Integrin expression on cell adhesion function and up-regulation of P125FAK and paxillin in metastatic renal carcinoma cells. Connect Tissue Res 34: 161–174, 1996Google Scholar
  85. 85.
    Tang DG, Tarrien M, Dobrzynski P, Honn KV: Melanoma cell spreading on fibronectin induced by 12(S)-HETE involves both protein kina. J Cell Physiol 165: 291–306, 1995Google Scholar
  86. 86.
    Bergan R, Kyle E, Nguyen P, Trepel J, Ingui C, Neckers L: Genistein-stimulated adherence of prostate cancer cells is associated with the binding of focal adhesion kinase to beta-1-integrin. Clin Exp Metastasis 14: 389–398, 1996Google Scholar
  87. 87.
    Nakagawa K, Sogo S, Hioki K, Tokunaga R, Taketani S: Acquisition of cell adhesion and induction of focal adhesion kinase of human colon cancer Colo 201 cells by retinoic acid-induced differentiation. Differentiation 62: 249–257, 1998Google Scholar
  88. 88.
    Abe Y, Tsutsui T, Mu J, Kosugi A, Yagita H, Sobue K, Niwa O, Fujiwara H, Hamaoka T: A defect in cell-to-cell adhesion via integrin-fibronectin interactions in a highly metastatic tumor cell line. Jpn J Cancer Res 88: 64–71, 1997Google Scholar
  89. 89.
    Zhang L, Bewick M, Lafrenie RM: Role of Raf-1 and FAK in cell density-dependent regulation of integrin-dependent activation of MAP kinase. Carcinogenesis 23: 1251–1258, 2002Google Scholar
  90. 90.
    Staiano N, Garbi C, Squillacioti C, Esposito S, Di Martino E, Belisario MA, Nitsch L, Di Natale P: Echistatin induces decrease of pp125FAK phosphorylation, disassembly of actin cytoskeleton and focal adhesions, and detachment of fibronectin-adherent melanoma cells. Eur J Cell Biol 73: 298–305, 1997Google Scholar
  91. 91.
    Perks CM, Newcomb PV, Norman MR, Holly JM: Effect of insulin-like growth factor binding protein-1 on integrin signaling and the induction of apoptosis in human breast cancer cells. J Mol Endocrinol 22: 141–150, 1999Google Scholar
  92. 92.
    Chatterjee S, Brite KH, Matsumura A: Induction of apoptosis of integrin-expressing human prostate cancer cells by cyclic Arg-Gly-Asp peptides. Clin Cancer Res 7: 3006–3011, 2001Google Scholar
  93. 93.
    Lin HM, Lee YJ, Li G, Pestell RG, Kim HR: Bcl-2 induces cyclin D1 promoter activity in human breast epithelial cells independent of cell anchorage. Cell Death Differ 8: 44–50, 2001Google Scholar
  94. 94.
    Carloni V, Mazzocca A, Pantaleo P, Cordella C, Laffi G, Gentilini P: The integrin, alpha6beta1, is necessary for the matrix-dependent activation of FAK and MAP kinase and the migration of human hepatocarcinoma cells. Hepatology 34: 42–49, 2001Google Scholar
  95. 95.
    Akasaka T, van Leeuwen RL, Yoshinaga IG, Mihm MC Jr., Byers HR: Focal adhesion kinase (p125FAK) expression correlates with motility of human melanoma cell lines. J Invest Dermatol 105: 104–108, 1995Google Scholar
  96. 96.
    Wick W, Wick A, Schulz JB, Dichgans J, Rodemann HP, Weller M: Prevention of irradiation-induced glioma cell invasion by temozolomide involves caspase 3 activity and cleavage of focal adhesion kinase. Cancer Res 62: 1915–1919, 2002Google Scholar
  97. 97.
    Verderame MF, Guan JL, Woods Ignatoski KM: Transformation and pp60v-src autophosphorylation correlate with SHC-GRB2 complex formation in rat and chicken cells expressing host-range and kinase-active, transformation-defective alleles of v-src. Mol Biol Cell 6: 953–966, 1995Google Scholar
  98. 98.
    Kahana O, Micksche M, Witz IP, Yron I: The focal adhesion kinase (P125FAK) is constitutively active in human malignant melanoma. Oncogene 21: 3969–3977, 2002Google Scholar
  99. 99.
    Rodina A, Schramm K, Musatkina E, Kreuser ED, Tavitian A, Tatosyan A: Phosphorylation of p125FAK and paxillin focal adhesion proteins in src-transformed cells with different metastatic capacity. FEBS Lett 455: 145–148, 1999Google Scholar
  100. 100.
    Crouch DH, Fincham VJ, Frame MC: Targeted proteolysis of the focal adhesion kinase pp125 FAK during c-MYC-induced apoptosis is suppressed by integrin signaling. Oncogene 12: 2689–2696, 1996Google Scholar
  101. 101.
    van der Gaag EJ, Leccia MT, Dekker SK, Jalbert NL, Amodeo DM, Byers HR: Role of zyxin in differential cell spreading and proliferation of melanoma cells and melanocytes. J Invest Dermatol 118: 246–254, 2002Google Scholar
  102. 102.
    Brunton VG, Fincham VJ, McLean GW, Winder SJ, Paraskeva C, Marshall JF, Frame MC: The protrusive phase and full development of integrin-dependent adhesions in colon epithelial cells require FAK-and ERK-mediated actin spike formation: Deregulation in cancer cells. Neoplasia 3: 215–226, 2001Google Scholar
  103. 103.
    Marushige Y, Marushige K: Alterations in focal adhesion and cytoskeletal proteins during apoptosis. Anticancer Res 18: 301–307, 1998Google Scholar
  104. 104.
    Shibata K, Kikkawa F, Nawa A, Tamakoshi K, Suganuma N, Tomoda Y: Increased matrix metalloproteinase-9 activity in human ovarian cancer cells cultured with conditioned medium from human peritoneal tissue. Clin Exp Metastasis 15: 612–619, 1997Google Scholar
  105. 105.
    Shibata K, Kikkawa F, Nawa A, Suganuma N, Hamaguchi M: Fibronectin secretion from human peritoneal tissue induces Mr 92,000 type IV collagenase expression and invasion in ovarian cancer cell lines. Cancer Res 57: 5416–5420, 1997Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Veronica Gabarra-Niecko
    • 1
  • Michael D. Schaller
    • 1
    • 2
    • 3
    • 4
    Email author
  • Jill M. Dunty
    • 1
  1. 1.Department of Cell and Developmental BiologyUSA
  2. 2.Lineberger Comprehensive Cancer CenterUSA
  3. 3.Comprehensive Center for Inflammatory DisordersUSA
  4. 4.Center for Thrombosis and HemostasisUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations