Journal of Low Temperature Physics

, Volume 132, Issue 1–2, pp 1–10 | Cite as

Analytical Solution for Nonlinear Schrödinger Vortex Reconnection

  • Sergey Nazarenko
  • Robert West
Article

Abstract

Analysis of the nonlinear Schrödinger vortex reconnection is given in terms of coordinate-time power series. The lowest order terms in these series correspond to a solution of the linear Schrödinger equation and provide several interesting properties of the reconnection process, in particular the nonsingular character of reconnections, the anti-parallel configuration of vortex filaments and a square-root law of approach just before/after reconnections. The complete infinite power series represents a fully nonlinear analytic solution in a finite volume which includes the reconnection point, and is valid for finite time provided the initial condition is an analytic function. These series solutions are free from the periodicity artifacts and discretization error of the direct computational approaches and they are easy to analyze using a computer algebra program.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Akhmediev, Opt. Quan. Elec. 30, 535(1998).Google Scholar
  2. 2.
    A. W. Snyder, L. Poladian, and D. J. Mitchell, Opt. Lett. 17 (11) 789(1992).Google Scholar
  3. 3.
    G. A. Swartzlander and C. T. Law, Phys. Rev. Lett. 69 (17), 2503(1992).Google Scholar
  4. 4.
    N. G. Berloff and P. H. Roberts, J. Phys. A 32 (30), 5611(1999).Google Scholar
  5. 5.
    V. L. Ginzburg and L. P. Pitaevskii, Sov. Phys. JETP 7, 858(1958).Google Scholar
  6. 6.
    K. W. Schwarz, Phys. Rev. B 38 (4), 2398(1988).Google Scholar
  7. 7.
    N. Ercolani and R. Montgomery, Phys. Lett. A 180, 402(1993).Google Scholar
  8. 8.
    J. Koplik and H. Levine, Phys. Rev. Lett. 71 (9), 1375(1993).Google Scholar
  9. 9.
    M. Leadbeater, T. Winiecki, D. C. Samuels, C. F. Barenghi, and C. S. Adams, Phys. Rev. Lett. 86 (8), 1410(2001).Google Scholar
  10. 10.
    C. Nore, M. Abid, and M. E. Brachet, Phys. Rev. Lett. 78 (20), 3896(1997).Google Scholar
  11. 11.
    B. V. Svistunov, Phys. Rev. B 52 (5), 3647(1995).Google Scholar
  12. 12.
    C. F. Barenghi, D. C. Samuels, G. H. Bauer, and R. J. Donnelly, Phys. Fluids 9 (9), 2631(1997).Google Scholar
  13. 13.
    A. Pumir and E. Siggia, Phys. Fluids A 2 (2), 220(1990).Google Scholar
  14. 14.
    A. Pumir and E. Siggia, Physica D 37, 539(1989).Google Scholar
  15. 15.
    A. Pumir and E. Siggia, Phys. Rev. Lett. 55 (17), 1749(1985).Google Scholar
  16. 16.
    R. Courant and D. Hilbert, Methods of mathematical physics: partial differential equations 2 (Interscience, London, 1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Sergey Nazarenko
    • 1
  • Robert West
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations