Advertisement

Journal of Structural Chemistry

, Volume 43, Issue 6, pp 990–994 | Cite as

Clathrate Hydrates of Tetrabutylammonium and Tetraisoamylammonium Halides

  • L. S. Aladko
  • Yu. A. Dyadin
  • T. V. Rodionova
  • I. S. Terekhova
Article

Abstract

Clathrate formation was considered for two series of systems: (C4H9)4NG–H2O and i‐C5H11)4NG–H2O G = F-, Cl-, Br-, I-). Clathrate hydrates of tetraisoamylammonium halides were shown to melt at higher temperatures than those of the butyl series. In passing from fluoride to bromide, the stability of compounds of the butyl series falls significantly and tetrabutylammonium iodide does not produce polyhydrates. In the isoamyl series, the melting points of polyhydrates vary insignificantly for different halides. In addition, the highest melting hydrate of tetraisoamylammonium bromide melts at a slightly higher temperature than chloride hydrates, indicating not only a hydrophilic effect of the anion on clathrate formation.

Keywords

Chloride Physical Chemistry Hydrate Inorganic Chemistry Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    G. A. Jeffrey and R. K. McMullan, Progr. Inorg. Chem., 8, 43-108 (1967).Google Scholar
  2. 2.
    I. S. Terekhova, Yu. A. Dyadin, et al., Deposited at VINITI, No. 911-77, Moscow (1977).Google Scholar
  3. 3.
    J. Lipkowski, K. Suwinska, K. Udachin, et al., J. Incl. Phenom., 9, 275-279 (1990).Google Scholar
  4. 4.
    T. C. W. Mak and R. K. McMullan, J. Incl. Phenom., 6, 451-454 (1988).Google Scholar
  5. 5.
    T. C. W. Mak, H. J. Bruins Slot, and P. T. Beurskens, J. Incl. Phenom., 4, 295-299 (1986).Google Scholar
  6. 6.
    D. Mootz and R. Seidel, J. Incl. Phenom., 8, 139-144 (1990).Google Scholar
  7. 7.
    Yu. A. Dyadin, L. S. Zelenina, et al., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1, No 2, 62-68 (1972).Google Scholar
  8. 8.
    H. Nakayama and K. Watanabe, Bull. Chem. Soc. Jpn., 49, No. 12, 1254-1257 (1976).Google Scholar
  9. 9.
    Yu. A. Dyadin and I. S. Terekhova, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 4, 88-96 (1980).Google Scholar
  10. 10.
    J. Lipkowski, K. Suwinska, T. V. Rodionova, et al., J. Incl. Phenom., 17, No. 2, 137-148 (1994).Google Scholar
  11. 11.
    L. S. Aladko, T. V. Rodionova, and Yu. A. Dyadin, Zh. Obshch. Khim., 70, 1972-1975 (2000).Google Scholar
  12. 12.
    R. K. McMullan and G. A. Jeffrey, J. Chem. Phys., 31, 1231-1234 (1959).Google Scholar
  13. 13.
    L. S. Aladko, Yu. A. Dyadin, and T. V. Mikina, Zh. Obshch. Khim. (in print).Google Scholar
  14. 14.
    Yu. A. Dyadin, F. V. Zhurko, Yu. M. Zelenin, et al., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1, 13-18 (1984).Google Scholar
  15. 15.
    L. S. Aladko, Yu. A. Dyadin, and T. V. Mikina, Zh. Obshch. Khim. (in print).Google Scholar
  16. 16.
    Yu. A. Dyadin, I. S. Terekhova, T. M. Polyanskaya, and L. S. Aladko, Deposited at VINITI, No. 31130-76, Moscow (1976).Google Scholar
  17. 17.
    Yu. A. Dyadin, I. S. Terekhova, and Yu. M. Zelenin, Zh. Strukt. Khim., 17, 655-659 (1976).Google Scholar
  18. 18.
    L. A. Gaponenko, S. F. Solodovnikov, Yu. A. Dyadin, et al., ibid., 25, 175-179 (1984).Google Scholar
  19. 19.
    J. O. Lundgren and J. Olovsson, J. Chem. Phys., 49, 1068-1072 (1968).Google Scholar
  20. 20.
    J. O. Lundgren and J. Olovsson, Acta Crystallogr., 23, 966-971 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • L. S. Aladko
    • 1
  • Yu. A. Dyadin
    • 1
  • T. V. Rodionova
    • 1
  • I. S. Terekhova
    • 1
  1. 1.Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirsk

Personalised recommendations