Space Science Reviews

, Volume 104, Issue 1–4, pp 613–640 | Cite as

The Huygens Doppler Wind Experiment ' Titan Winds Derived from Probe Radio Frequency Measurements

  • M.K. Bird
  • R. Dutta-Roy
  • M. Heyl
  • M. Allison
  • S.W. Asmar
  • W.M. Folkner
  • R.A. Preston
  • D.H. Atkinson
  • P. Edenhofer
  • D. Plettemeier
  • R. Wohlmuth
  • L. Iess
  • G.L. Tyler

Abstract

A Doppler Wind Experiment (DWE) will be performed during the Titan atmospheric descent of the ESA Huygens Probe. The direction and strength of Titan's zonal winds will be determined with an accuracy better than 1 m s−1 from the start of mission at an altitude of ∼160 km down to the surface. The Probe's wind-induced horizontal motion will be derived from the residual Doppler shift of its S-band radio link to the Cassini Orbiter, corrected for all known orbit and propagation effects. It is also planned to record the frequency of the Probe signal using large ground-based antennas, thereby providing an additional component of the horizontal drift. In addition to the winds, DWE will obtain valuable information on the rotation, parachute swing and atmospheric buffeting of the Huygens Probe, as well as its position and attitude after Titan touchdown. The DWE measurement strategy relies on experimenter-supplied Ultra-Stable Oscillators to generate the transmitted signal from the Probe and to extract the frequency of the received signal on the Orbiter. Results of the first in-flight checkout, as well as the DWE Doppler calibrations conducted with simulated Huygens signals uplinked from ground (Probe Relay Tests), are described. Ongoing efforts to measure and model Titan's winds using various Earth-based techniques are briefly reviewed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, M.: 1992, A preliminary assessment of the Titan planetary boundary layer. In: Symposium on Titan [ESA SP-338], pp. 113–118.Google Scholar
  2. Allison, M., Del Genio, A. D. and Zhou, W.: 1994, Zero potential vorticity envelopes for the zonal-mean velocity of the Venus/Titan atmospheres, J. Atmos. Sci. 51, 694–702.CrossRefADSGoogle Scholar
  3. Atkinson, D. H., Pollack, J. B. and Seiff, A.: 1990, Measurement of a zonal wind profile on Titan by Doppler tracking of the Cassini entry probe, Radio Sci. 25, 865–882.ADSGoogle Scholar
  4. Atkinson, D. H., Ingersoll, A. P. and Seiff, A.: 1997, Deep winds on Jupiter as measured by the Galileo Probe, Nature 388, 649–650.CrossRefADSGoogle Scholar
  5. Atkinson, D. H., Pollack, J. B. and Seiff, A.: 1996, Galileo Doppler measurements of the deep zonal winds at Jupiter, Science 272, 842–843.ADSGoogle Scholar
  6. Atkinson, D. H., Pollack, J. B. and Seiff, A.: 1998, The Galileo Probe Doppler Wind Experiment: Measurement of the deep zonal winds on Jupiter, J. Geophys. Res. 103, 22 911–22 928.CrossRefADSGoogle Scholar
  7. Bird, M. K.: 1997, Atmospheric attenuation of the Huygens S-Band radio signal during the Titan descent. In: Huygens Science Payload and Mission [ESA-SP 1177], pp. 321–335.Google Scholar
  8. Bird, M. K., Allison, M., Atkinson, D. H., Asmar, S. W., Dutta-Roy, R., Edenhofer, P., Folkner, W. M., Heyl, M., Iess, L., Plettemeier, D., Preston, R. A., Tyler, G. L. and Wohlmuth, R.: 1997a, Rubidium ultra-stable oscillators at Titan: The Huygens Doppler Wind Experiment. In: Scientific Applications of Clocks in Space [JPL Publ. 97-15], L. Maleki (ed.), pp. 211–220.Google Scholar
  9. Bird, M. K., Heyl, M., Allison, M., Asmar, S. W., Atkinson, D. H., Edenhofer, P., Plettemeier, D., Wohlmuth, R., Iess, L. and Tyler, G. L.: 1997b, The Huygens Doppler Wind Experiment. In: Huygens Science Payload and Mission [ESA-SP 1177], pp. 139–162.Google Scholar
  10. Caldwell, J., Wu, N., Smith, P. H., Lorenz, R. D. and Lemmon, M. T.: 1996, Hubble Space Telescope imaging of Titan in 1995, Bull. Amer. Astron. Soc. 28, 1132.ADSGoogle Scholar
  11. Combes, M., Vapillon, L., Gendren, E., Coustenis, A., Lai, O., Wittemberg, R. and Sirdey, R.: 1997, Spatially resolved images of Titan by means of adaptive optics, Icarus 129, 482–497.CrossRefADSGoogle Scholar
  12. Coustenis, A.: 1990, Spatial variations of temperature and composition in Titan's atmosphere: Recent results, Ann. Geophysicae 8, 645–652.ADSGoogle Scholar
  13. Coustenis, A. and Taylor, F.: 1999, Titan: The Earth-like moon, World Scientific Publ. Co., Singapore.Google Scholar
  14. Del Genio, A. D., Zhou, W. and Eichler, T. P.: 1993, Equatorial superrotation in a slowly rotating GCM: Implications for Titan and Venus, Icarus 101, 1–17.CrossRefADSGoogle Scholar
  15. Flasar, F. M.: 1998, The dynamic meteorology of Titan, Planet. Space Sci. 46, 1125–1147.CrossRefADSGoogle Scholar
  16. Flasar, F. M., Allison, M. and Lunine, J. I.: 1997, Titan zonal wind model. In: Huygens Science Payload and Mission [ESA-SP 1177], pp. 287–298.Google Scholar
  17. Flasar, F. M., Samuelson, R. E. and Conrath, B. J.: 1981, Titan's atmosphere: temperature and dynamics, Nature 292, 693–698.CrossRefADSGoogle Scholar
  18. Folkner, W. M., Preston, R. A., Border, J. S., Navarro, J., Wilson, W. and Oestreich, M.: 1997, Earth-based radio tracking of the Galileo Probe for Jupiter wind estimation, Science 275, 644–646.CrossRefADSGoogle Scholar
  19. Folkner, W. M., Woo, R. and Nandi, S.: 1998, Ammonia abundance in Jupiter's atmosphere derived from the attenuation of the Galileo Probe's radio signal, J. Geophys. Res. 103, 22 847–22 855.CrossRefADSGoogle Scholar
  20. Fulchignoni, M. et al.: 1997, The Huygens Atmospheric Structure Instrument (HASI), In: Huygens Science Payload and Mission [ESA-SP 1177], pp. 163–176.Google Scholar
  21. Griffith, C. A., Owen, T., Miller, G. A. and Geballe, T.: 1998, Transient clouds in Titan's lower atmosphere, Nature 395, 575–578.CrossRefADSGoogle Scholar
  22. Griffith, C. A., Hall, J. L., and Geballe, T.: 2000, Detection of daily clouds on Titan, Science 290, 509–513.CrossRefADSGoogle Scholar
  23. Hanel, R. et al.: 1981, Infrared observations of the Saturnian system from Voyager 1, Science 212, 192–200.ADSGoogle Scholar
  24. Hinson, D. P. and Tyler, G. L.: 1983, Internal gravity waves in Titan's atmosphere observed by Voyager radio occultation, Icarus 54, 337–352.CrossRefADSGoogle Scholar
  25. Hourdin, F., Talagrand, O., Sadourny, R., Courtin, R., Gautier, D. and McKay, C. P.: 1995, Numerical simulation of the general circulation of the atmosphere of Titan, Icarus 117, 358–374.CrossRefADSGoogle Scholar
  26. Hubbard, W. B. et al.: 1993, The occultation of 28 Sgr by Titan, Astron. Astrophys. 269, 541–563.ADSGoogle Scholar
  27. Hunten, D. M., Tomasko, M. G., Flasar, F. M., Samulson, R. E., Strobel, D. F. and Stevenson, D. J.: 1984, Titan, In: Saturn, T. Gehrels and M. S. Mathews (eds.), U. Arizona Press, Tucson, pp. 671–759.Google Scholar
  28. Jaffe, L. D. and Herrell, L. M.: 1997, Cassini/Huygens scientific instruments, spacecraft, and mission, J. Spacecraft Rockets 34, 509–521.CrossRefADSGoogle Scholar
  29. Kostiuk, T., Fast, K. E., Livengood, T. A., Hewagama, T., Goldstein, J. J., Espenak, F. and Buhl, D.: 2000, Direct measurement of winds on Titan, Geophys. Res. Lett., 28, 2361–2364.CrossRefADSGoogle Scholar
  30. Kunde, V. G. et al.: 2002, The Composite Infrared Spectrometer, Space Sci. Rev., this issue.Google Scholar
  31. Lebreton, J.-P. and Matson, D. L.: 1997, The Huygens Probe: science payload and mission overview. In: Huygens Science Payload and Mission [ESA-SP 1177], pp. 5–24.Google Scholar
  32. Lebreton, J.-P. and Matson, D. L.: 2002, The Huygens Probe: Science, Payload and Mission. Space Sci. Rev., 104, 59–100.CrossRefADSGoogle Scholar
  33. Lindal, G. F., Wood, G. E., Holtz, H. B., Sweetnam, D. N., Eshleman, V. R. and Tyler, G. L.: 1983, The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements, Icarus 53, 348–363.CrossRefADSGoogle Scholar
  34. Lellouch, E., Coustenis, A., Gautier, D., Raulin, F., Dubouloz, N. and Frère, C.: 1989, Titan's atmosphere and hypothesized ocean: A reanalysis of the Voyager 1 radio-occultation and IRIS 7.7-µm data, Icarus 79, 328–349.CrossRefADSGoogle Scholar
  35. Lorenz, R. D., Smith, P. H. and Lemmon, M. T.: 1995, The search for clouds on Titan using HST imaging, Bull. Amer. Astron. Soc. 27, 1107.ADSGoogle Scholar
  36. Lorenz, R. D., Lemmon, M. T. and Smith, P. H.: 1999, Evidence for clouds on Titan from HST WFPC-2, Bull. Amer. Astron. Soc. 31, 1137.Google Scholar
  37. Lunine, J. I., Flasar, F. M. and Allison, M.: 1991, Huygens Probe wind drift: science issues and recommendations, Internal Report to the Huygens Project.Google Scholar
  38. Meier, R., Smith, B. A., Owen, T. C. and Terrile, R. J.: 2000, The surface of Titan from NICMOS observations with the Hubble Space Telescope, Icarus 145, 462–473.CrossRefADSGoogle Scholar
  39. Pollack, J. B., Atkinson, D. H., Seiff, A. and Anderson, J. D.: 1992, Retrieval of a wind profile from the Galileo Probe telemetry signal, Space Sci. Rev. 60, 143–178.CrossRefADSGoogle Scholar
  40. Seiff, A., Blanchard, R. C., Knight, T. C. D., Schubert, G., Kirk, D. B., Atkinson, D., Mihalov, J. D. and Young, R. E.: 1997, Wind speeds measured in the deep jovian atmosphere by the Galileo Probe accelerometers, Nature 388, 650–652.CrossRefADSGoogle Scholar
  41. Smith, P. H., Lemmon, M. T., Lorenz, R. D., Sromovsky, L. R., Caldwell, J. J. and Allison, M. D.: 1996, Titan's surface, revealed by HST imaging, Icarus 119, 336–349.CrossRefADSGoogle Scholar
  42. Sollazzo, C. et al.: 1997, Cassini/Huygens integrated data link report, ESA-JPL-HUY-25999.Google Scholar
  43. Tokano, T., Neubauer, F. M., Laube, M. and McKay, C. P.: 1999, Seasonal variation of Titan's atmospheric structure simulated by a general circulation model, Planet. Space Sci. 47, 493–520.CrossRefADSGoogle Scholar
  44. Tomasko, M. G. et al.: 1997, The Descent Imager/Spectral Radiometer (DISR) aboard Huygens, In: Huygens Science Payload and Mission [ESA-SP 1177], pp. 109–138.Google Scholar
  45. Toon, O. B., McKay, C. P., Courtin, R. and Ackerman, T. P.: 1988, Methane rain on Titan, Icarus 75 255–284.CrossRefADSGoogle Scholar
  46. Tyler, G. L., Eshleman, V. R., Anderson, J. D., Levy, G. S., Lindal, G. F., Wood, G. E. and Croft T. A.: 1981, Radio science investigations of the Saturn system with Voyager 1: Preliminary results, Science 212, 201–206.ADSGoogle Scholar
  47. Wenkert, D. D. and Garneau, G. W.: 1987, Does Titan's atmosphere have a 2-day rotation period?, Bull. Amer. Astron. Soc. 19, 875.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M.K. Bird
    • 1
  • R. Dutta-Roy
    • 1
  • M. Heyl
    • 1
  • M. Allison
    • 2
  • S.W. Asmar
    • 3
  • W.M. Folkner
    • 3
  • R.A. Preston
    • 3
  • D.H. Atkinson
    • 4
  • P. Edenhofer
    • 5
  • D. Plettemeier
    • 5
  • R. Wohlmuth
    • 5
  • L. Iess
    • 6
  • G.L. Tyler
    • 7
  1. 1.Radioastronomisches Inst.Univ. BonnBonnGermany
  2. 2.NASA-Goddard Institute for Space StudiesNew YorkUSA
  3. 3.Jet Propulsion LaboratoryCalif. Inst. of TechnologyPasadenaUSA
  4. 4.Dept. of Electrical EngineeringUniversity of IdahoMoscowUSA
  5. 5.Institut für HochfrequenztechnikUniversität BochumBochumGermany
  6. 6.Dipartimento AerospazialeUniversitá di Roma ‘La apienza’RomaItaly
  7. 7.Center for Radar AstronomyStanford UniversityStanfordUSA

Personalised recommendations