Theoretical and Mathematical Physics

, Volume 135, Issue 2, pp 704–713 | Cite as

Vortices in a Gas of Hard Spheres

  • V. D. Gordevsky


We approximately describe the transition regime between two vortex-type flows in a gas of hard spheres. Such flows rotate as solid bodies about their axes, which in turn move translationally with arbitrary linear velocities. We study the asymptotic behavior of the integral norm of the discrepancy between the two sides of the Boltzmann equation under a special choice of hydrodynamic parameters of the distribution.

hard spheres Boltzmann equation vortex-type flows 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Cercignani, Theory and Application of the Boltzmann Equation, Scottish Academic Press, Edinburg (1975).Google Scholar
  2. 2.
    T. Carleman, Problémes mathématiques dans la théorie cinetique des gaz, Almqvist and Wiksells, Uppsala (1957).Google Scholar
  3. 3.
    A. V. Bobylev, Sov. Phys. Dokl., 20, 822 (1976).Google Scholar
  4. 4.
    A. V. Mishchenko and D. Ya. Petrina, Theor. Math. Phys., 77, 1096 (1988).Google Scholar
  5. 5.
    H. M. Ernst, J. Stat. Phys., 34, 1001 (1984).Google Scholar
  6. 6.
    V. D. Gordevskii, Mat. Fiz. Anal. Geom., 2, 168 (1995).Google Scholar
  7. 7.
    V. D. Gordevskii, Mat. Fiz. Anal. Geom., 4, 46 (1997).Google Scholar
  8. 8.
    V. D. Gordevskii, Theor. Math. Phys., 114, 99 (1998).Google Scholar
  9. 9.
    V. D. Gordevsky, Math. Meth. Appl. Sci., 21, 1479 (1998).Google Scholar
  10. 10.
    V. D. Gordevsky, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mech., 514, 17 (2001).Google Scholar
  11. 11.
    V. D. Gordevskyy, Theor. Math. Phys., 126, 234 ( 2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • V. D. Gordevsky
    • 1
  1. 1.Kharkov National UniversityKharkovUkraine

Personalised recommendations