Advertisement

Neural Processing Letters

, Volume 17, Issue 2, pp 205–215 | Cite as

Automorphism Partitioning with Neural Networks

  • Brijnesh J. Jain
  • Fritz Wysotzki
Article

Abstract

We present a neural approach for approximating the automorphism partitioning problem of a given graph. This approach combines the energy minimization process of neural networks for combinatorial optimization problems with simple group-theoretic properties. Neural networks are applied to rapidly find relevant automorphisms while group-theoretic information guides the search for these automorphisms.

association graph automorphism group automorphism partition graph maximum clique recurrent neural network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambler, A. P., Barrow, H. G., Brown, C. M., Burstall, R. M. and Popplestone, R. J.: A versatile computer-controlled assembly system. In: International Joint Conference on Artificial Intelligence, pp. 298–307. Stanford University, California, 1973.Google Scholar
  2. 2.
    Babel, L., Chuvaeva, I. V., Klin, M. and Pasechnik, D. V.: Algebraic Combinatorics in Mathematical Chemistry. Methods and Algorithms. II. Program Implementation of the Weisfeiler-Leman Algorithm. Technical Report TUM-M9701, Technical University Munich, 1997.Google Scholar
  3. 3.
    Bomze, I. M., Budinich, M., Pardalos, P. M. and Pelillo, M.: The maximum clique problem. In: D.-Z. Du and P. M. Pardalos, (eds.), Handbook of Combinatorial Optimization, 4, pp. 1–74. Kluwer Academic Publishers, Boston, MA, 1999.Google Scholar
  4. 4.
    Brualdi, R. A.: Introductory Combinatorics. Englewood Cliffs, N.J., 1992, Prentice Hall.Google Scholar
  5. 5.
    Jagota, A.: Approximating maximum clique with a Hopfield network, IEEE Trans. Neural Networks, 6 (1995), 724–735.Google Scholar
  6. 6.
    Jain, B. J. and Wysotzki, F.: Fast winner-takes-all networks for the maximum clique problem. In: 25th German Conference on Artificial Intelligence, pp. 163–173, 2002, Springer.Google Scholar
  7. 7.
    Pelillo, M.: Replicator equations, maximal cliques, and graph isomorphism, Neural Computation, 11(8) (1999), 1933–1955.Google Scholar
  8. 8.
    Pelillo, M., Siddiqi, K. and Zucker, S. W.: Matching hierarchical structures using association graphs, IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(11) (1999), 1105–1120.Google Scholar
  9. 9.
    Ponomarenko, I. N.: Graph algebras and the graph isomorphism problem, Appl. Algebra Engrg. Comm. Comput., 5 (1994), 277–286.Google Scholar
  10. 10.
    Smith, K. A.: Smith Neural networks for combinatorial optimization: A review of more than a decade of research, INFORMS Journal on Computing, 11(1) (1999), 15–34.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Brijnesh J. Jain
    • 1
  • Fritz Wysotzki
    • 1
  1. 1.Department of Computer ScienceTechnical University BerlinGermany

Personalised recommendations