Water, Air, and Soil Pollution

, Volume 145, Issue 1–4, pp 377–393 | Cite as

Diatom and Chrysophyte Algal Response to Long-Term PCB Contamination from a Point-Source in Northern Labrador, Canada

  • Andrew M. Paterson
  • Alexandra A. Betts-Piper
  • John P. Smol
  • Barbara A. Zeeb
Article

Abstract

The long-term response of diatom and chrysophyte communities to local PCB contamination was examined in an impacted and referencelake in northern Labrador. Beginning in the late 1950s, lake Saglek-2 (SK-2) received direct inputs of the contaminant in runoff, leaving a record of rising PCB concentrations in lake sediments. An examination of sediment samples spanning the past∼ 150 yr revealed chrysophyte and diatom assemblages characteristic of clear, slightly acidic, oligotrophic lakes, butsurprisingly little change in either community was observed through time. The lack of response may be explained by severalfactors. For example, elevated PCB concentrations in lake sediments may not reflect bioavailable concentrations in lakewater. Therefore, realized concentrations may be too low to exhibit detrimental effects in phytoplankton communities. Our findings do, however, have important implications for studies ofclimate change in circumpolar regions. First, we provide additional evidence that climatic change has been minimal in northern Labrador, in contrast to changes observed in other Arctic and sub-Arctic regions. Second, our findings support thenotion that recent, marked changes in species composition observed in other Arctic lakes are the result of recent climatechange and not caused by the contamination of lakes from the long-range transport of pollutants.

chrysophyte cysts climate diatoms northern Labrador PCBs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrie, L. A., Gregor, D., Hargrave, B., Lake, R., Muir, D., Shearer, R., Tracy, B. and Bidleman, T.: 1992, ‘Arctic contaminants: sources, occurrence and pathways’ Sci. Tot. Envir. 122, 1-74.Google Scholar
  2. Betts-Piper, A. A.: 2001, ‘Chrysophyte Stomatocyst-Based Paleolimnological Investigations of Environmental Changes in Arctic and Alpine Environments’ M. Sc. Thesis, Department of Biology, Queen's University, Kingston, Ontario, Canada, 207 pp.Google Scholar
  3. Braune, B., Muir, D., DeMarch, B., Gamberg, M. Poole, K. Currie, R. Dodd, M. Dushenko, W. Eamer, J. Elkin, B. Evans, M. Grundy, S. Hebert, C. Johnstone, R. Kidd, K. Koenig, B. Lockhart, L. Marshall, H. Reimer, K. Sanderson, J. and Shutt, L.: 1999, ‘Spatial and temporal trends of contaminants in Canadian Arctic freshwater and terrestrial ecosystems: a review’ Sci. Tot. Envir. 230, 145-207.Google Scholar
  4. Bright, D. A., Dushenko, W. T., Grundy, S. L. and Reimer, K. J.: 1995, ‘Evidence for short-range transport of polychlorinated biphenyls in the Canadian Arctic using congener signatures of PCBs in soils’ Sci. Tot. Envir. 160/161, 251-263.Google Scholar
  5. Canadian Council of Resource and Environmental Ministers: 1986, The PCB Story, CCREM, Toronto, Ontario, Canada, 32 pp.Google Scholar
  6. Cronberg, G.: 1988, ‘Variability in size and ultrastructure of the statospore of Mallomonas caudata’ Hydrobiol. 161, 31-39.Google Scholar
  7. Douglas, M. S. V., Smol, J. P. and Blake, W. Jr.: 1994, ‘Marked post 18th century environmental change in high-arctic ecosystems’ Science 266, 416-419.Google Scholar
  8. Douglas, M. S. V. and Smol, J. P.: 1999, ‘Freshwater Diatoms as Indicators of Environmental Change in the High Arctic’ in E. F. Stoermer and J. P. Smol (eds), The diatoms: Applications for the Environmental and Earth Sciences, Cambridge University Press, Cambridge, 469 pp.Google Scholar
  9. Duff, K. E. and Smol, J. P.: 1991, ‘Morphological descriptions and stratigraphic distributions of the chrysophycean stomatocysts from a recently acidified lake (Adirondack Park, N.Y.)’ J. Paleolim. 5, 73-113.Google Scholar
  10. Duff, K. E., Zeeb, B. A. and Smol, J. P.: 1995, Atlas of Chrysophycean Cysts, Kluwer Academic Publishers, Netherlands, 189 pp.Google Scholar
  11. Eakins, J. D. and Morrison, R. T.: 1978, ‘A new procedure for the determination of lead-210 in lake and marine sediments’ Int. J. Appl. Radiat. Isot. 29, 531-536.Google Scholar
  12. Eisenreich, S. J., Capel, P. D., Robbins, J. A. and Bourbonniere, R.: 1989, ‘Accumulation and diagenesis of chlorinated hydrocarbons in lacustrine sediments’ Env. Sci. Technol. 23, 1116-1126.Google Scholar
  13. Environment Canada: 2000, ‘A National Ecological Framework for Canada: Torngat Mountains’ http://www3.ec.gc.ca/?ecozones/ Google Scholar
  14. Environmental Sciences Group (ESG): 1997, ‘Environmental Assessment of Saglek, Labrador (LAB-2)’ Prepared for the NorthWarning System Office of the Department of National Defence (RMC-CCE-ES-97-4).Google Scholar
  15. Fallu, M-A., Allaire, N. and Pienitz, R.: 2000, Freshwater Diatoms from Northern Québec and Labrador (Canada): Species-Environmental Relationships in Lakes of Boreal Forest, Forest-Tundra and Tundra Regions, Bibliotecha Diatomologica, Band 45, J. Cramer, Stuttgart, 200 pp.Google Scholar
  16. Fallu, M-A., Allaire, N. and Pienitz, R.: 2002, ‘Distribution of freshwater diatoms in 64 Labrador (Canada) lakes: species-environment relationships along latitudinal gradients and reconstruction models for water colour and alkalinity’ Can. J. Fish. Aquat. Sci. 59, 328-349.Google Scholar
  17. Fisher, N. S. and Wurster, C. F.: 1973, ‘Individual and combined effects of temperature and PCBs on the growth of three species of phytoplankton’ Environ. Pollut. 5, 205.Google Scholar
  18. Fisher, N. S., Graham, L. B., Carpenter, E. J. and Wurster, C. F.: 1973, ‘Geographic differences in phytoplankton sensitivity to PCBs’ Nature 24, 548.Google Scholar
  19. Glew, J. R.: 1988, ‘A portable extruding device for close interval sectioning of unconsolidated core samples’ J. Paleolimnol. 1, 235-239.Google Scholar
  20. Glew, J. R.: 1991, ‘Miniature gravity corer for recovering short sediment cores’ J. Paleolimnol. 5, 285-287.Google Scholar
  21. Gunkel, G., Mast, P-G. and Nolte, C.: 1995, ‘Pollution of aquatic ecosystems by polychlorinated biphenyls (PCB)’ Limnol. 25, 321-331.Google Scholar
  22. Harding, L. W. Jr.: 1976, ‘Polychlorinated biphenyl inhibition of marine phytoplankton photosynthesis in the Northern Adriatic Sea’ Bull Env. Con. Tox. 16, 559-566.Google Scholar
  23. Harding, L. W. Jr. and Phillips, J. H. Jr.: 1978, ‘Polychlorinated biphenyls (PCB) effects on marine phytoplankton photosynthesis and cell division’ Mar. Biol. 49, 93-101.Google Scholar
  24. Jensen, J.: 1997, State of the Arctic Environment Report on Organochlorines: Arctic Case Study Prepared for the Economic Commission for Europe (ECE) - Convention on Longe-Range Transboundary Air Pollution, Department of Indian Affairs and Northern Development Canada, Ottawa, Ontario, Canada, 30 pp.Google Scholar
  25. Kattenberg, A., Giorgi, F., Grassl, H., Meehl, G. A., Mitchell, J. F. B., Stouffer, R. J., Tokioka, T., Weaver, A. J. and Wigley, T.M. L.: 1996, ‘ClimateModels - Projections of Future Climate’ in J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg and K. Maskell (eds), Climate Change 1995: The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, Cambridge University Press, pp. 285-357.Google Scholar
  26. Kidd, K. A., Hesslein, R. H., Ross, B. J., Koczanski, K., Stephens, G. R. and Muir, D. C. G.: 1998, ‘Bioaccumulation of organochlorines through a remote freshwater food web in the Canadian Arctic’ Env. Pollut. 102, 91-103.Google Scholar
  27. Kinloch, D., Kuhnlein, H. and Muir, D. C. G.: 1992, ‘Inuit foods and diet. A preliminary assessment of benefits and risks’ Sci. Tot. Env. 122, 247-278.Google Scholar
  28. Knowlton, C. C.: 2000, ‘Spatial Distribution and Characterization of Polychlorinated Biphenyl Contaminated Sediment from Saglek, Northern Labrador’ M.Sc. Thesis, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada, 84 pp.Google Scholar
  29. Krammer, K. and Lange-Bertalot, H.: 1986-1991, ‘Bacillariophyceae’ in H. Ettl, J. Gerloff, H. Heynig and D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, 2 (1-4), Gustav Fischer Verlag, Stuttgart, 876, 596, 576 and 437 pp.Google Scholar
  30. Kuzyk, Z. A.: 2000, ‘Bioaccumulation of PCBs from Contaminated Sediments in a Coastal Marine Ecosystem of Northern Labrador’ M. Sc. Thesis, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada, 85 pp.Google Scholar
  31. Mahanty, H. K. and Gresshoff, P. M.: 1978, ‘Influence of polychlorinated biphenyls (PCB) on growth of freshwater algae’ Botan. Gazette 139, 202-206.Google Scholar
  32. Muir, D., Braune, B., DeMarch, B., Norstrom, R., Wagemann, R., Lockhart, L., Hargrave, B., Bright, D., Addison, R., Payne, J. and Reimer, K.: 1999, ‘Spatial and temporal trends and effects of contaminants in the Canadian Arctic marine ecosystem: a review’ Sci. Tot. Env. 230, 83-144.Google Scholar
  33. Muir, D. G. C., Omelchenko, A., Grift, N. P., Savoie, D. A., Lockhart, W. L., Wilkinson, P. and Brunskill, G. J.: 1996, ‘Spatial trends and historical deposition of polychlorinated biphenyls in Canadian midlatitude and Arctic lake sediments’ Env. Sci. Technol. 30, 3609-3617.Google Scholar
  34. Muir, D. G. C., Wagemann, R., Hargrave, B. T., Thomas, D. J., Peakall, D. B. and Norstrom. R. J.: 1992, ‘Arctic marine ecosystem contamination’ Sci. Tot. Env. 122, 75-134.Google Scholar
  35. O'Connors, H. B. Jr., Wurster, C. F., Powers, C. D., Biggs, D. C. and Rowland, R. G.: 1978, ‘Polychlorinated biphenyls may alter marine trophic pathways by reducing phytoplankton size and production’ Science 201, 737-739.Google Scholar
  36. Overpeck, J. T., Hughen, K. A., Hardy, D., Bradley, R. S., Case, R., Douglas, M. S. V., Finney, B., Gajewski, K., Jacoby, G., Jennings, A. E., Lamoureux, S., Lasca, A., MacDonald, G. M., Moore, J. J., Retelle, M., Wolfe, A. P. and Zielinski, G. A.: 1997, ‘Arctic environmental change over the last four centuries’ Science 278, 1251-1256.Google Scholar
  37. Pier, D. M., Betts-Piper, A. A., Knowlton, C. C., Zeeb, B. A. and Reimer, K. J.: ‘Redistribution of polychlorinated biphenyls from a local point source: Vascular plants as indicators of the Halo effect’ submitted to Arctic, Antarctic and Alpine Research.Google Scholar
  38. Rouse, W. R., Douglas, M. S. V., Hecky, R. E., Hershey, A. E., Kling, G. W., Lesack, L., Marsh, P., McDonald, M., Nicholson, B. J., Roulet, N. T. and Smol, J. P.: 1997, ‘Effects of climate change on the freshwaters of Arctic and sub-Arctic North America’ Hydrol. Proces. 11, 873-902.Google Scholar
  39. Rühland, K. M.: 2001, ‘Diatom Assemblage Shifts Relative to Changes in Environmental and Climatic Conditions in the Circumpolar Treeline Regions in the Canadian and Siberian Arctic’ Ph.D. Thesis, Department of Biology, Queen's University, Kingston, Ontario, Canada, 265 pp.Google Scholar
  40. Rybak, M., Rybak, I. And Nicholls, K.: 1991, ‘Sedimentary chrysophycean cyst assemblages as paleoindicators in acid sensitive lakes’ J. Paleolim. 5, 19-72.Google Scholar
  41. Saulnier-Talbot, E. and Pienitz, R.: 2001, ‘Isolement postglaciere d'un basin c¸ Stier près de Kuujjuaraapik-Whapmagoostui: une analyse biostratigraphique diatomifère’ Geographique Physique et Quaternaire 55, 63-74.Google Scholar
  42. Serreze, M. C., Walsh, J. E., Chapin, F. S. III., Osterkamp, T., Dyurgerov, M., Romanovsky, V., Oechel, W.C., Morison, J., Zhang, T. and Barry, R. G.: 2000, ‘Observational evidence of recent change in the northern high-latitude environment’ Clim. Change 46, 159-207.Google Scholar
  43. Sorvari, S., Korhola, A. and Thompson, R.: 2002, ‘Lake diatom response to recent Arctic warming in Finnish Lapland’ Global Change Biol. 8, 153-163.Google Scholar
  44. Thomas, D. J., Tracey, B., Marshall, H. and Norstrom, R. J.: 1992, ‘Arctic terrestrial ecosystem contamination’ Sci. Tot. Env. 122, 135-164.Google Scholar
  45. Twitchell, K.: 1991, ‘The not-so-pristine Arctic: from plankton to polar bears, the food chain is contaminated by global pollution’ Canad. Geogr. 111, 32-34.Google Scholar
  46. Wania, F. and Mackay, D.: 1993, ‘Global Fractionation and cold condensation of low volatility organochlorine compounds in polar regions’ Ambio 22, 10-18.Google Scholar
  47. Wilkinson, A. N., Zeeb, B. A., Smol, J. P., Glew, J. R. and Duff, K. E.: 2002, Atlas of Chrysophycean Cysts: Volume II, Kluwer Academic Publishers, the Netherlands.Google Scholar
  48. Wilson, S. E., Cumming, B. F. and Smol, J. P.: 1996, ‘Assessing the reliability of salinity inference models from diatoms assemblages: an examination of a 219-lake data set from western North America’ Can. J. Fish. Aquatic Sci. 53, 1580-1594.Google Scholar
  49. Wolfe, A. P. and Perren, B. B.: 2001, ‘Chrysophyte microfossils record marked responses to recent environmental changes in high-and mid-arctic lakes’ Can. J. Botany 79, 742-752.Google Scholar
  50. World Health Organization: 1993, Environmental Health Criteria 140: Polychlorinated biphenyls and terphenyls, World Health Organization, Geneva, Switzerland, 682 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Andrew M. Paterson
    • 1
  • Alexandra A. Betts-Piper
    • 1
  • John P. Smol
    • 1
  • Barbara A. Zeeb
    • 2
  1. 1.Paleoecological Environmental Assessment and Research Laboratory, Department of BiologyQueen's UniversityKingstonCanada
  2. 2.Department of Chemistry and Chemical EngineeringRoyal Military College of CanadaKingstonCanada

Personalised recommendations