On the Dynamics of a Deformable Satellite in the Gravitational Field of a Spherical Rigid Body



In this paper, a model is developed for the dynamics of a system of two bodies whose material points are under the influence of a central gravitational force. One of the bodies is assumed to be rigid and spherically symmetric, while the other is assumed to be deformable. To develop a tractable model for the system, the deformable body is modeled using Cohen and Muncaster's theory of a pseudo-rigid body. The resulting model of the system has several of the features, such as angular momentum conservation, exhibited by more restrictive models. We also show how the self-gravitation of the deformable body can be accommodated using appropriate constitutive equations for a force tensor. This enables our model to subsume many existing models of ellipsoidal figures of equilibrium. After the model and its conservations have been discussed, attention is restricted to steady motions of the system. Several results, which generalize recent works on rigid satellites, are established for these motions. For a specific choice of constitutive equations for the pseudo-rigid body, we determine the steady motions with the aid of a numerical continuation method. These results can also be considered as generalizations of earlier works on Roche's ellipsoids of equilibrium.

satellite dynamics deformable bodies gravitation pseudo-rigid bodies Cosserat points 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrarova, Ye. V.: 1995, 'The stability of steady motions of a rigid body in a central field', J. Appl. Math. Mech. 58, 903-910.Google Scholar
  2. Abrarova, Ye. V. and Karapetyan, A. V.: 1996, 'Bifurcations and stability of the steady motions and relative equilibria of a rigid body in a central gravitational field', J. Appl. Math. Mech. 60, 369-380.Google Scholar
  3. Abul'naga, M. Z. and Barkin, Yu. V.: 1979, 'Regular motions of a rigid body in the gravitational field of a sphere', Sov. Astron. 23, 495-499.Google Scholar
  4. Barkin, Yu. V.: 1985, 'Oblique regular motion of a satellite and some small effects in the motions of the Moon and Phobos', Cosmic Res. 23, 20-30.Google Scholar
  5. Beatty, M. F.: 1987, 'A class of universal relations in isotropic elasticity theory', J. Elasticity 17, 113-121.Google Scholar
  6. Beletskii, V. V.: 1966, Motion of an Artificial Satellite about its Center of Mass, translated from the Russian by Lerman, Z., Israel Program for Scientific Translations, Jerusalem.Google Scholar
  7. Casey, J.: 1995, 'On the advantages of a geometrical viewpoint in the derivation of Lagrange's equations for a rigid continuum', Z. Angew. Math. Phys. 46, S805-S847.Google Scholar
  8. Chandrasekhar, S.: 1963, 'The equilibrium and stability of the Roche ellipsoids', Astrophys. J. 138, 1182-1213.Google Scholar
  9. Chandrasekhar, S.: 1987, Ellipsoidal Figures of Equilibrium, Dover Publications, New York.Google Scholar
  10. Cohen, H. and Muncaster, R. G.: 1984, 'The dynamics of pseudo-rigid bodies: general structure and exact solutions', J. Elasticity 14, 127-154.Google Scholar
  11. Cohen, H. and Muncaster, R. G.: 1988, The Theory of Pseudo-Rigid Bodies, Springer-Verlag, New York.Google Scholar
  12. Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Sandstede, B. and Wang, X.: 1997, 'AUTO97: Continuation and bifurcation software for ordinary differential equations (with HomCont)', Concordia University, Montreal.Google Scholar
  13. Green, A. E. and Naghdi, P. M.: 1991, 'A thermoelastic theory of a Cosserat point with application to composite materials', Quart. J. Mech. Appl. Math. 44, 335-355.Google Scholar
  14. Gurtin, M. E.: 1981, An Introduction to Continuum Mechanics, Academic Press, San Diego.Google Scholar
  15. Hughes, P. C.: 1986, Spacecraft Attitude Dynamics, Wiley, New York.Google Scholar
  16. Jeans, J. H.: 1928, Astronomy and Cosmogony, Cambridge University Press, Cambridge.Google Scholar
  17. Lamb, H.: 1932, Hydrodynamics, 6th edn, Cambridge University Press, Cambridge.Google Scholar
  18. Lambeck, K.: 1988, Geophysical Geodesy: The Slow Deformations of the Earth, Clarendon Press, Oxford.Google Scholar
  19. Lewis, D. and Simo, J. C.: 1990, 'Nonlinear stability of rotating pseudo-rigid bodies', R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 427, 281-319.Google Scholar
  20. Maciejewski, A. J.: 1995, 'Reduction, relative equilibria and potential in the two rigid bodies problem', Celest. Mech. Dyn. Astron. 63, 1-28.Google Scholar
  21. Nordenholz, T. R.: 1998, 'The stability of steady motions of pseudo-rigid bodies', PhD Dissertation, University of California, Berkeley.Google Scholar
  22. Nordenholz, T. R. and O'Reilly, O. M.: 1998a, 'On steady motions of isotropic, elastic Cosserat points', IMA J. Appl. Math. 60, 55-72.Google Scholar
  23. Nordenholz, T. R. and O'Reilly, O. M.: 1998b, 'On the existence of a stretch for a prescribed stress in isotropic, incompressible, elastic materials', Math. Mech. Solids 3, 169-181.Google Scholar
  24. Nordenholz, T. R. and O'Reilly, O. M.: 2001, 'A class of motions of elastic, symmetric Cosserat points: existence, bifurcation, and stability', Int. J. Non-Linear Mech. 36, 353-374.Google Scholar
  25. O'Reilly, O. M. and Varadi, P. C.: 1999, 'Hoberman's sphere, Euler parameters and Lagrange's equations', J. Elasticity 56, 171-180.Google Scholar
  26. Roche, E.: 1850, 'Mémoire sur la figure d'une masse fluide soumise à l'attraction d'un point éloigneé', Acad. Sci. Lett. Montpellier 1, 243-262 and 333-348.Google Scholar
  27. Routh, E. J.: 1905, The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies, 6th edn, Macmillan, London.Google Scholar
  28. Rubanovsky, V. N.: 1990, 'Stability of steady motions of complex mechanical systems', Appl.Mech.: Sov. Rev. 1, 145-236.Google Scholar
  29. Rubin, M. B.: 1985, 'On the theory of a Cosserat point and its application to numerical solution of continuum problems', ASME J. Appl. Mech. 52, 368-372.Google Scholar
  30. Rubin, M. B.: 2000, Cosserat Theories: Shells, Rods, and Points, Kluwer Academic Publishers, Dordrecht.Google Scholar
  31. Simo, J. C., Lewis, D. and Marsden, J. E.: 1991, 'Stability of relative equilibria. Part I. The reduced energy momentum method', Arch. Ration. Mech. Anal. 115, 15-59.Google Scholar
  32. Todhunter, I.: 1873, History of the Mathematical Theories of Attraction and the Figure of the Earth, Constable, London.Google Scholar
  33. Truesdell, C. A. and Noll, W.: 1992, The Non-Linear Field Theories of Mechanics, Springer-Verlag, New York.Google Scholar
  34. Wang, L.-S., Krishnaprasad, P. S. and Maddocks, J. H.: 1991, 'Hamiltonian dynamics of a rigid body in a central gravitational field', Celest. Mech. Dyn. Astron. 50, 349-386.Google Scholar
  35. Wang, L.-S., Maddocks, J. H. and Krishnaprasad, P. S.: 1992, 'Steady rigid body motions in a central gravitational field', J. Astronaut. Sci. 40, 449-478.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of California at BerkeleyBerkeleyU.S.A

Personalised recommendations