Advertisement

Water, Air, and Soil Pollution

, Volume 145, Issue 1–4, pp 359–375 | Cite as

Air-pollution Effect and Paleotemperature Scale versus δ13C Records in Tree Rings and in a Peat Core (Southern Poland)

  • Mariusz O. Jędrysek
  • Marek Krąpiec
  • Grzegorz Skrzypek
  • Adam Kałużny
Article

Abstract

Carbon isotope analyses of peat profiles from the Karkonosze Mts. (SW Poland) and tree-ring cellulose from Wisła river valley in the Kraków region (S Poland) have been carried out. The samples analysed represent approximately the last 1100 years.The δ13C profile in peat from the Szrenica peat bog ranges from -26.74 to -21.81‰ and the δ13C value of tree rings range from -27.82 to -21.94 permil. The observed variations in the δ13C values of the peat samples and tree rings from Poland in general correlated with each other (Figure 1). This suggests that the δ13C value of organic matter in terrestrial conditions is generally controlled by the same environmental factors. On average, over the last millennium (X-XIX century), the δ13C value of peat cellulose has been 1.8‰ isotopically heavier compared to the corresponding tree ring cellulose value.It is not possible to provide a precise calibration of isotope signatures in tree rings, as the assimilation isotope effect depends mostly on local microclimatic conditions and specific species demands. In the region under study, temperature was the dominant factor controlling the δ13C value of tree ring cellulose and peat-bog Sphagnum before the XIX century. It is estimated that, in the temperate climate of Poland, the carbon isotope fractionation between living plants and atmospheric carbon dioxide (Δ13Cp-a) for C3 plants is about -0.26‰/1 °C. This corresponds to 2.1‰/1000 m of elevation. Since the mid-XIX, in the Wisła valley when the river was regulated and water deficit in the neighbouring areas became common (Trafas, 1975), water availability plays a primary role in isotope fractionation of the vegetation. Since the 1955, just after the `Lenin' steelworks started operation, pollution became the dominant factor controlling the carbon isotope signature of plants. Contamination of the atmosphere by fossil fuel burning from the `Lenin' steelworks increased the δ13C value of tree ring cellulose by about 1.3‰. This was probably caused by an increased concentration of atmospheric pollution (SOx and dust) limiting the ventilation rate of the stomata.

atmospheric pollution carbon isotopes climate peat tree rings cellulose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barber, K. E.: 1981, Peat Stratigraphy and Climatic Change, A.A. Balkema/Rotterdam.Google Scholar
  2. Becker, B., Kromer, B. and Trimborn, P.: 1991, ‘Stable isotope tree-ring timescale of the Late Glacial/Holocene boundary’ Nature 353, 647-649.Google Scholar
  3. Brenninkmeijer, C. A. M.: 1983, ‘Deuterium, Oxygen-18 and Carbon-13 in Tree Rings and Peat Deposits in Relation to Climate’ Ph.D. Thesis, Rijksuniversiteit te Groningen.Google Scholar
  4. Brenninkmeijer, C. A. M., Van Geel, B. and Mook, W. G.: 1982, ‘Variations in the D/H and 18O/16O ratios in cellulose extracted from a peat bog core’ Earth. Planet. Sci. Lett. 61, 283.Google Scholar
  5. Bruckner, G., Gebauer, L. and Schulze, E.-D.: 1993, ‘Uptake of 15NH3 by Picea abies in closed chamber experiments’ Isotopenpraxis Environ. Health Stud. 29, 71-76.Google Scholar
  6. Buhay, M. W. and Edwards, T. W.: 1993, ‘Reconstruction of Little Ice Age climate in Southern Ontario, Canada, from Oxygen and Hydrogen Isotopes in Tree Rings’ in: Proceedings of a Symposium ‘Isotope Techniques in the Study of past and Current Environmental Changes in the Hydrosphere and the Atmosphere', Vienna, 19-23 April 1993, pp. 407-417.Google Scholar
  7. Climatic Atlas: 1973, PPWK, Warszawa (in Polish).Google Scholar
  8. Dupont, L. M. and Brenninkmeijer, C. A. M.: 1984, ‘Paleobotanic and Isotopic Analysis of the Late Sub-Boreal and Early Sub-atlantic Peat from Engbertsdijksveen VII, The Netherlands’ Review of Paleobotany and Palynology 41, 241-271.Google Scholar
  9. Edwards, T. W. and Fritz, P.: 1986, ‘Assessing meteoric water composition and relative humidity from O and H in wood cellulose: Palaeoclimatic implications for southern Ontario, Canada, Appl. Geochem. 1, 715-723.Google Scholar
  10. Epstein, S., Yapp, J. and Hall, J. H.: 1976, ‘The determination of the D/H ratio of non-exchangeable hydrogen in cellulose extracted from aquatic and land plants’ EPSL 30, 41-251.Google Scholar
  11. Farquhar, G. D., O'Leary, M. H. and Berry, J. A.: 1982, ‘On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves’ Aust. J. Plant Physiol. 9, 121-137.Google Scholar
  12. Farquhar, G. D., Ehleringer, J. R. and Hubic, K. T.: 1989, ‘Carbon isotope discrimination and photosynthesis’ Annu. Rev. Plant Physiology Plant Mol. Biol. 40, 503-537.Google Scholar
  13. Feng, X. and Epstein, S.: 1995, ‘Carbon isotopes in trees from arid environments and implications for reconstructing atmospheric CO2 concentration’ Geochim. Cosmochim., Acta 59, 2599-2608.Google Scholar
  14. Freyer, H. D.: 1979, ‘On the δ13C record in tree rings. Part II. Registration of microenvironmental CO2 and anomalous pollution effect’ Tellus 31, 308-312.Google Scholar
  15. Freyer, H. D. and Belacy, N.: 1983, ‘13C/12C records in northern hemispheric trees during the past 500 years, anthropogenic impact and climatic superpositions’ J. Geophys. Res. 88, 6844-6852.Google Scholar
  16. Freidli, H., Lötscher, H., Oeschger, H., Seigenthaler, U. and Stauffer, B.: 1986, ‘Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries’ Nature 324, 237-328.Google Scholar
  17. Gebauer, G., Katz, C. and Schulze, E.-D.: 1991, ‘Uptake of Gaseous and Liquid Nitrogen Deposits and Influence on the Nutritional Status of Norway Spruce’ in R. Handschel and F. Bese (eds), Effects of Forest Management on the Nitrogen-Cycle with Respect to Changing Environmental Conditions, GSF Report 43/91, Munchen-Neuherberg, Germany, pp. 83-92.Google Scholar
  18. Gebauer, G., Giesemann, A., Schulze, E.-D. and Jäger, H.-J.: 1994, ‘Isotope ratios and concentrations of sulphur and nitrogen in needles and soils of Picea abies stands as influenced by atmospheric deposition of sulphur and nitrogen compounds’ Plant and Soil, 164, 267-281.Google Scholar
  19. Grinstead, M. J., Wilson, A. T. and Ferguson, C. W.: 1979, ‘13C/12C ratio variations in Pinus longaeva (Bristlecone pine) cellulose during the last millenium’ Earth Planet. Sci. Lett. 42, 251-253.Google Scholar
  20. Hill, S. A., Waterhouse, J. S., Field, E. M., Switsur, V. R. and ap Rees, T.: 1995, ‘Rapid recycling of triose phosphates in oak stem tissue’ Plant, Cell Environ. 18, 931-936.Google Scholar
  21. Hoefs, J.: 1997, Stable Isotope Geochemistry, Springer-Verlag, 201 p.Google Scholar
  22. Hemming, D. L.: 1998, ‘Stable Isotopes in Tree Rings: Biosensors of Climate and Atmospheric Carbon Dioxide Variations’ Ph.D. Thesis, Cambridge University, U.K.Google Scholar
  23. Hemming, D. L., Switsur, V. R., Waterhouse, J. S., Heaton, T. H. E. and Carter, A. H. C.: 1998, ‘Climate variation and the stable isotope composition of tree ring cellulose: an intercomparison of Quercus robur, Fagus silvatica and Pinus sylvestrisTellus 50B(1), 25-33.Google Scholar
  24. ę, M. O., Skrzypek, G., Wada, E., Doroszko, B., Kral, T. E., Pazdur, A., Vijarnsorn, P. and Takai, Y.: 1995, ‘δ13C and δ34S analysis in peat profiles, and global change’ Przegl?d Geologiczny 43, 1004-1010 (in Polish, English abstr. and figs.).Google Scholar
  25. ę, M. O., Skrzypek, G., Wada, E., Pazdur, A., Halas, St., Vijarnsorn, P., Takai, Y. and Ueda, S.: 1996, ‘δ13C and δ34S in Peat: Possible Tool for Paleoenvironmental Reconstruction’ in S. H. Bottrell (editor in chief), A. C. Alpin, J. M. McArtur, R. J. Newton, M. Krom and R. Raiswell (assoc. editors), Proceedings Fourth International Symposium on the Geochemistry of the Earth Surface, Ilkley, Yorkshire, England, U.K., 22-28 July 1996, held under the auspices of: The International Association of Geochemistry and Cosmochemistry, pp. 221-224.Google Scholar
  26. ę, M. O., Kr?piec, M., Skrzypek, G., Ka?u?ny, A. and Ha?as, St.: 1998a, ‘An attempt to calibrate carbon and hydrogen isotope ratios in oak tree rings cellulose: The last millennium’ RMZ-Materials and Geoenvironment 45, 82-90.Google Scholar
  27. ę, M. O., Skrzypek, G., Ka?u?ny, A., Kr?piec, M., Halas, St. and Pazdur, A.: 1998b, ‘Paleotemeprature scale, δ13C record in tree rings, δ13C record in a peat core: Why do they correlate?’ RMZ-Materials and Geoenvironment, 45, 99-106.Google Scholar
  28. ę, M. O., Ka?u?ny, A. and Hoefs, J.: 2002, ‘S and O isotope ratios in spruce needles as a tracer of atmospheric pollution’ J. Geophysical Research - Atmospheres (in press).Google Scholar
  29. Kalicki, T. and Kr?piec, M.: 1995, ‘Problems of dating alluvium using buried subfossil tree trunks: Lessons from the ‘black oaks’ of the Vistula Valley, Central Europe’ The Holocene 5, 243-250.Google Scholar
  30. Keeling, C. D. and Whorf, T. P.: 1996, ‘Atmospheric CO2 Records from Sites in the SIO Air Sampling Network’ in Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, Oak Ridge, Tenn., U.S.A.Google Scholar
  31. Korner, Ch., Farquhar, G. D. and Roksandic, Z.: 1988, ‘A global survey of carbon isotope discrimination in plants from high altitude., Oecologia (Berlin) 74, 623-632.Google Scholar
  32. Korner, Ch., Farquhar, G. D. and Wong, S. C.: 1991, ‘Carbon isotope discrimination by plants follows latitudial and altitudial trends’ Oecologia (Berlin) 88, 30-40.Google Scholar
  33. Lamb, H. H.: 1977, Climate: Present, Past and Future, Vol. 2, Methuen, London.Google Scholar
  34. Leavitt, W. and Long, A.: 1986, ‘Stable-carbon isotope variability in tree foliage and wood’ Ecology 67, 1002-1010.Google Scholar
  35. Leavitt, S. W. and Long, A., 1989, ‘The atmospheric δ13C record as derived from 56 Pinyon trees at 14 sites in the southwestern United States’ Radiocarbon 31 469-474.Google Scholar
  36. Levin, I., Kromer, B., Schoch-Fischer, H., Bruns, M., Münnich, M., Bedrau, D., Vogel, J. C. and Münnich, K.: 1996, ‘δ13C Records from Sites in Central Europe’ in T. A. Boden, D. P. Kaiser, R. J. Stepanski and F. W. Stoss (eds), Trends'93: A Compendium of Data on Global Change, ORNL/CDIAC-65, Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, Oak Ridge, Tenn., U.S.A.Google Scholar
  37. Lipp, J., Trimborn, P., Fritz, H., Moser, H., Becker, B. and Frenzel, B.: 1991, ‘Stable isotopes in tree ring cellulose and climatic change’ Tellus 43B, 322-330.Google Scholar
  38. Loader, N. J. and Hemming, D. L.: 2001, ‘Spatial variations in pollen δ13C correlate with temperature and seasonal development timing’ The Holocene 11, 587-592.Google Scholar
  39. Martin, B. and Sutherland, E.: 1990, ‘Air pollution in the past recorded in width and stable carbon isotope composition of annual growth rings of Douglas-fir’ Plant, Cell Environ. 13, 839-844.Google Scholar
  40. Martin, B., Bytnerowicz, A. and Thorstenson, Y. R.: 1988, ‘Effects of air pollutants on the composition of stable carbon isotopes, δ13C, of leaves and wood, and on Leaf Injury’ Plant Physiol. 88, 218-223.Google Scholar
  41. Matthes, F. W.: 1939, ‘Report of committee on glaciers’ Trans. Am. Geoph. Union 1, 518-520.Google Scholar
  42. O'Leary, M. H.: 1981, ‘Carbon isotope fractionation in plants’ Phytochemistry 20, 553-567.Google Scholar
  43. Olszyk, D. M. and Tingey, D. T.: 1986, ‘Joint action of O3 and SO2 in modifying plant gas exchange’ Plant Physiol. 82, 401-405.Google Scholar
  44. Reich, P.B., Schoettle, A. W., Raba, R. M. and Amundson R. G.: 1986, ‘Response of soybean to low concentrations of ozone. I. Reduction in leaf and whole plant net photosynthesis and leaf chlorophyll content’ J. Environ. Qual. 15, 31-35.Google Scholar
  45. Reich, P. B., Schoettle, A. W., Stroo, H. F., Troian, J. and Amundson, R. G.: 1987, ‘Effect of ozone and acid rain on white pine (Pinus strobus) seedling grown in five soils. I. Net photosynthesis and growth’ Can. J. Bot. J. 65, 977-987.Google Scholar
  46. Reinert, R. A.: 1984, ‘Plant response to air pollutant mixtures’ Annu. Rev. Phytopathol. 22, 421-442.Google Scholar
  47. Robertson, I., Rolfe, J., Switsur, V. R., Carter, A. H., Hall, M. A., Barker, A. C. and Waterhouse, J. S.: 1997, ‘Signal strength and climate relationships in 13C/12C ratios of tree ring cellulose from oak in southwest Finland’ Geophys. Resear. Lett. 24, 1487-1490.Google Scholar
  48. Saurer, M. and Siegenthaler, U.: 1989, ‘13C/12C isotope ratios in trees are sensitive to relative humidity’ Dendrochronologia 7, 9-13.Google Scholar
  49. Saurer, M., Siegenthaler, U. and Schweingruber, F.: 1995, ‘The climate-carbon isotope relationship in tree rings and the significance of site conditions’ Tellus 47B, 320-330.Google Scholar
  50. Schleser, G. H.: 1995, ‘Parameters Determining Carbon Isotope Ratios in Plants’ in B. Frenzel (ed.), Problems of Stable Isotopes in Tree-rings, Lake Sediments and Peat-bogs as Climatic Evidence for the Holocene, European Palaeoclimate and Man 10 (Special Issue: Europ. Sci. Found. Project).Google Scholar
  51. Schleser, G. H., Helle, G., Lücke, A. and Vos, H.: 1999, ‘Isotope signals as climate proxies: The role of transfer functions in the study of terrestrial archives’ Quatern. Sci. Rev. 18, 927-943.Google Scholar
  52. Skrzypek, G.: 1999, ‘Isotope Record of Environmental Changes in Selected Upper Holocene Peat Cores from Poland’ (in Polish, English abstract), Ph.D. Thesis, Institute of Geological Sciences, University Wroclaw, Poland.Google Scholar
  53. Stachlewski, W.: 1978, Climate: The Past, Present and Future, PWN, Warszawa, (in Polish).Google Scholar
  54. Stunner, M. and Braziunas, T. F.: 1987, ‘Tree cellulose 13C/12C isotope ratios and climate change’ Nature 328, 58-60.Google Scholar
  55. Szaran, J., 1990, ‘The δ13C andCO2 Concentration in the Air’ in M. O. ę (ed.), Course-book on Isotope Geology, Wroclaw Univ. and Comm. Mineral. Sci., pp. 160-168.Google Scholar
  56. Trafas, K.: 1975, ‘Variations in the Wisla valley on the West from Kraków: Reconstruction based on archive maps and photointerpretation’ Zeszyty Naukowe UJ, Prace Geograficzne 40 (in Polish).Google Scholar
  57. Trepi´nska, J.: 1971, ‘The secular course of air temperature of Cracow on the basis of the 140-year series of meteorological observations (1826-1965) made at the Astronomical Observatory of the Jagiellonian University’ Acta Geophys. Polonica 19, 227-304.Google Scholar
  58. Troughton, J. H. and Card, K. A.: 1975, ‘Temperature effects on the carbon-isotope ratio of C3, C4 and Crasssulacean-acid-metabolism (CAM) Plants’ Planta 123, 185-190.Google Scholar
  59. Yapp, C. J. and Epstein, S.: 1977, ‘Climatic implications of meteoric water over North America (9,500-22,000 BP) as inferred from ancient wood cellulose C-H hydrogen’ Earth Planet. Sci. Lett. 34, 333-350.Google Scholar
  60. White, J. W. C., Ciais, P., Figge, R. A., Kenny, R. and Markgraf, V.: 1994, ‘A high-resolution record of atmospheric CO2 content from carbon isotopes in peat’ Nature 367, 153-156.Google Scholar
  61. Wigley, T. M. L.: 1997, ‘Implications of recent CO2 emission-limitation proposals for stabilization of atmospheric concentrations’ Nature 390, 267-270.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Mariusz O. Jędrysek
    • 1
  • Marek Krąpiec
    • 2
  • Grzegorz Skrzypek
    • 1
  • Adam Kałużny
    • 1
  1. 1.Laboratory of Isotope Geology and GeoecologyUniversity of WrocławWrocławPoland (author for correspondence
  2. 2.Department of Stratigraphy and Regional GeologyUniversity of Mining and MetallurgyPoland

Personalised recommendations