Space Science Reviews

, Volume 104, Issue 1–4, pp 433–468 | Cite as

Huygens Probe Aerosol Collector Pyrolyser Experiment

  • G. Israel
  • M. Cabane
  • J-F. Brun
  • H. Niemann
  • S. Way
  • W. Riedler
  • M. Steller
  • F. Raulin
  • D. Coscia
Article

Abstract

ACP's main objective is the chemical analysis of the aerosols in Titan's atmosphere. For this purpose, it will sample the aerosols during descent and prepare the collected matter (by evaporation, pyrolysis and gas products transfer) for analysis by the Huygens Gas Chromatograph Mass Spectrometer (GCMS). A sampling system is required for sampling the aerosols in the 135'32 km and 22'17 km altitude regions of Titan's atmosphere. A pump unit is used to force the gas flow through a filter. In its sampling position, the filter front face extends a few mm beyond the inlet tube. The oven is a pyrolysis furnace where a heating element can heat the filter and hence the sampled aerosols to 250 °C or 600 °C. The oven contains the filter, which has a thimble-like shape (height 28 mm). For transferring effluent gas and pyrolysis products to GCMS, the carrier gas is a labeled nitrogen 15N2, to avoid unwanted secondary reactions with Titan's atmospheric nitrogen.

Aeraulic tests under cold temperature conditions were conducted by using a cold gas test system developed by ONERA. The objective of the test was to demonstrate the functional ability of the instrument during the descent of the probe and to understand its thermal behavior, that is to test the performance of all its components, pump unit and mechanisms.

In order to validate ACP's scientific performance, pyrolysis tests were conducted at LISA on solid phase material synthesized from experimental simulation. The chromatogram obtained by GCMS analysis shows many organic compounds. Some GC peaks appear clearly from the total mass spectra, with specific ions well identified thanks to the very high sensitivity of the mass spectrometer. The program selected for calibrating the flight model is directly linked to the GCMS calibration plan. In order not to pollute the two flight models with products of solid samples such as tholins, we excluded any direct pyrolysis tests through the ACP oven during the first phase of the calibration. Post probe descent simulation of flight results are planned, using the much representative GCMS and ACP spare models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cabane, M., Chassefière, E., and Israel, G.: 1992, 'Formation and growth of photochemical aerosols in Titan's atmosphere', Icarus 96, 176–179.CrossRefADSGoogle Scholar
  2. Cabane, M., Rannou, P., Chassefière, E., and Israel, G.: 1993, 'Fractal aggregates in Titan's atmosphere', Planet. Space Sci. 41, 257–267.CrossRefADSGoogle Scholar
  3. Chassefière, E. and Cabane, M.: 1995, 'Two formation regions for Titan's hazes: indirect clues and possible synthesis mechanisms', Planet. Space Sci. 43, 91–103.CrossRefADSGoogle Scholar
  4. Clarke, D. W. and Ferris, J. P.: 1997, 'Chemical evolution on Titan: comparisons to the prebiotic Earth', Origins Life Evol. Biosphere 27, 225–248.CrossRefADSGoogle Scholar
  5. Coll, P.: 1997, 'Modélisation expérimentale de l'atmosphère de Titan: production et caractérisations physico-chimiques d'analogues des aérosols et de la phase gazeuse enfin représentatifs', Thèse de Doctorat de l'Université Paris 12.Google Scholar
  6. Coll, P., Coscia, D., Gazeau, M.-C., and Raulin, F.: 1997, 'New planetary atmosphere simulations: application to the organic aerosols of Titan', Adv. Space Res. 19 (7), 1113–1119.CrossRefADSGoogle Scholar
  7. Coll, P., Coscia, D., Gazeau, M.-C., Guez, L., and Raulin, F.: 1998, 'Review and latest results of laboratory investigations of Titan's aerosols', Origins Life Evol. Biosphere 28, 195–213.CrossRefADSGoogle Scholar
  8. Davies, C. N.: 1952, 'The separation of airborne dust and mist particles', Proc. Inst. Mech. Eng. 1B, 185–198.Google Scholar
  9. Davies, C. N.: 1973, 'Air Filtration', Academic Press, San Diego.Google Scholar
  10. Ehrenfreund, P., Boon, J. J., Commandeur, J., Sagan, C., Thompson, W. R., and Khare, B.: 1995, 'Analytical pyrolysis experiments of Titan aerosol analogues in preparation for the Cassini Huygens mission', Adv. Space Res. 15 (3), 335–342.CrossRefADSGoogle Scholar
  11. Frère, C., Raulin, F., Israel, G., and Cabane, M.: 1990, 'Microphysical modelling of Titan's atmosphere, application to the in-situ analysis', Adv. Space Res., 1, 159–163.CrossRefADSGoogle Scholar
  12. Fuchs, N.: 1964, 'Mechanics of aerosols', Pergamon, Elmsford, New York, USA.Google Scholar
  13. Israel, G., Cabane, M., R aulin, F., Chassefière, E., and Boon, J. J.: 1991, 'Aerosols in Titan's atmosphere: models, sampling techniques and chemical analysis', Ann. Geoph. 9, 1–13.ADSGoogle Scholar
  14. Khare, B. N., Sagan, C., Thompson, W. R., Arakawa, E. T., Suits, F., Callcott, T. A., Williams, M. W., Shrader, S., Ogino, H., Willigham, T. O., and Nagy, B.: 1984, 'The organic aerosols of Titan. Adv. Space Res. 4 (12), 59–68.CrossRefADSGoogle Scholar
  15. Lefebvre, D. and Krauss, J.: 1992, 'Etude aerodynamique et thermique de l'experience ACP'; Projet de fin d'etudes. Ecole Nationale Supérieure d'Ingenieurs de Constructions Aeronautiques.Google Scholar
  16. Niemann, H., Atreya, S., Bauer, S. J., Biemann, K., Block, B., Carignan, G., Donahue, T., Frost, L., Gautier, D., Harpold, D. Hunten, D., Israel, G., Lunine, J., Mauersberger, K., Owen, T., Raulin, F., Richards, J., and Way, S.: 1997, 'The Gas Chromatograph Mass Spectrometer aboard Huygens', ESA publication SP-1177, 85–107.ADSGoogle Scholar
  17. Pich, J.: 1971, 'Pressure characteristics of fibrous aerosol filters', J. of Colloid and Interface Science 37, 912–917.CrossRefGoogle Scholar
  18. Rannou, P., Cabane, M., Chassefière, E., Botet, R., McKay, C. P., and Courtin, R.: 1995, 'Titan's geometric albedo: role of the fractal structure of the aerosols', Icarus 118, 355–372.CrossRefADSGoogle Scholar
  19. Rannou, P., Cabane, M., Botet, R., and Chassefière, E.: 1997, 'A new interpretation of scattered light measurements at Titans limb', J. Geophys. Res. 102, 10 997–11 013.CrossRefADSGoogle Scholar
  20. Raulin, F., Coll, P., Coscia, D., Gazeau, M.-C., Sternberg, R., Bruston, P., Israel, G., and Gautier, D.: 1998, 'An exobiological view of Titan and the Cassini-Huygens mission', Adv. Space Res. 22 (3), 353–362.CrossRefADSGoogle Scholar
  21. Suneja, S. K. and Lee, C. H.: 1974, 'Aerosol filtration by fibrous filters at intermediate Reynolds numbers', Atmospheric Environment 8, 1081–1084.CrossRefGoogle Scholar
  22. Toon, O. B., McKay, C. P., Griffith, C. A., and Turco, R. P.: 1992, 'A physical model of Titan's aerosols', Icarus 95, 24–53.CrossRefADSGoogle Scholar
  23. West, R. A. and Smith, P. H.: 1991, 'Evidence for aggregate particles in the atmospheres of Titan and Jupiter', Icarus 90, 330–333.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • G. Israel
    • 1
  • M. Cabane
    • 1
  • J-F. Brun
    • 1
  • H. Niemann
    • 2
  • S. Way
    • 2
  • W. Riedler
    • 1
  • M. Steller
    • 3
  • F. Raulin
    • 1
  • D. Coscia
    • 4
  1. 1.Service d'Aéronomie du CNRSVerrières le BuissonFrance
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.Space Research InstituteGrazAustria
  4. 4.Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)Universités Paris VII et Paris XIICréteilFrance

Personalised recommendations