Problems of Information Transmission

, Volume 39, Issue 1, pp 92–103

The Tale of One-Way Functions

  • L. A. Levin
Article

Abstract

The existence of one-way functions (owf) is arguably the most important problem in computer theory. The article discusses and refines a number of concepts relevant to this problem. For instance, it gives the first combinatorial complete owf, i.e., a function which is one-way if any function is. There are surprisingly many subtleties in basic definitions. Some of these subtleties are discussed or hinted at in the literature and some are overlooked. Here, a unified approach is attempted.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Banach, S. and Tarski, A., Sur la decomposition des ensembles de points en parties respectivement congruentes, Fund. Math., 1924, vol. 6, pp. 244–277.Google Scholar
  2. 2.
    Kolmogorov, A.N., Three Approaches to the Quantitative Definition of Information, Probl. Peredachi Inf., 1965, vol. 1, no. 1, pp. 3–11 [Probl. Inf. Trans. (Engl. Transl.), 1965, vol. 1, no. 1, pp. 1–7].Google Scholar
  3. 3.
    Kolmogorov, A.N. and Uspensky, V.A., Algorithms and Randomness, Teor. Veroyatn. Primen., 1987, vol. 32, no. 3, pp. 425–455 [Theory Probab. Appl. (Engl. Transl.), 1987, vol. 32, no. 3, pp. 389–412].Google Scholar
  4. 4.
    Zvonkin, A.K. and Levin, L.A., Complexity of Finite Objects and the Algorithmic Concepts of Information and Randomness, Usp. Mat. Nauk, 1970, vol. 25, no. 6, pp. 85–127 [Russian Math. Surveys (Engl. Transl.), 1970, vol. 25, no. 6, pp. 83–124].Google Scholar
  5. 5.
    Rivest, R.L., Shamir, A., and Adleman, L.M., A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Commun. ACM, 1978, vol. 21, no. 2, pp. 12–126.Google Scholar
  6. 6.
    Kolmogorov, A.N., Several Theorems about Algorithmic Entropy and Algorithmic Amount of Information (a talk at a Moscow Math. Soc. meeting 10/31/67). An abstract in Usp. Mat. Nauk, 1968, vol. 23, no. 2, p. 201.Google Scholar
  7. 7.
    Blum, M. and Micali, S., How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits, SIAM J. Comp., 1984, vol. 13, pp. 850–864.Google Scholar
  8. 8.
    Yao, A.C., Theory and Applications of Trapdoor Functions, in Proc. of the 23rd Ann. IEEE Sympos. on Foundations of Computer Science, 1982, pp. 80–91.Google Scholar
  9. 9.
    Levin, L.A., One-Way Functions and Pseudorandom Generators, Combinatorica, 1987, vol. 7, no. 4, pp. 357–363.Google Scholar
  10. 10.
    Goldreich, O. and Levin, L.A., A Hard-Core Predicate for any One-way Function, in Proc. of the 21st Ann. ACM Sympos. on Theory of Computing, 1989, pp. 25–32.Google Scholar
  11. 11.
    Levin, L.A., Randomness and Non-determinism, J. Symb. Logic, 1993, vol. 58, no. 3, pp. 1102–1103.Google Scholar
  12. 12.
    Knuth, D.E., The Art of Computer Programming, vol. 2: Seminumerical Algorithms, Reading, Mass.: Addison-Wesley, 1997, 3rd ed., Sec. 3.5.F.Google Scholar
  13. 13.
    Hastad, J., Impagliazzo, R., Levin, L.A., and Luby, M., A Pseudorandom Generator from any One-way Function, SIAM J. Comp., 1999, vol. 28, no. 4, pp. 1364–1396.Google Scholar
  14. 14.
    Naor, M. and Yung, M., Universal One-way Hash Functions and Their Applications, in Proc. of the 21st Ann. ACM Sympos. on Theory of Computing, 1989, pp. 33–43.Google Scholar
  15. 15.
    Goldreich, O., Micali, S., and Wigderson, A., Proofs That Yield Nothing but Their Validity, J. ACM, 1991, vol. 38, no. 3, pp. 691–729.Google Scholar
  16. 16.
    Shamir, A., Factoring Numbers in O(log n) Arithmetic Steps, Inf. Process. Lett., 1979, vol. 8, no. 1, pp. 28–31.Google Scholar
  17. 17.
    Shor, P.W., Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM J. Comp., 1997, vol. 26, no. 5, pp. 1484–1509.Google Scholar
  18. 18.
    Shor, P.W., “Re: When will quantum computers become practical?” Usenet group sci.physics.research, 2000. Available from http://www.lns.cornell.edu/spr/2000–03/threads.html#0022485.Google Scholar
  19. 19.
    Levin, L.A., Average Case Complete Problems, SIAM J. Comp., 1986, vol. 15, no. 1, pp. 285–286.Google Scholar
  20. 20.
    Impagliazzo, R. and Levin, L.A., No BetterWays to Generate Hard NP Instances than Picking Uniformly at Random, in Proc. of the 31st Ann. IEEE Sympos. on Foundations of Computer Science, 1990, pp. 812–821.Google Scholar
  21. 21.
    Levin, L.A., Universal Search Problems, Probl. Peredachi Inf., 1973, vol. 9, no. 3, pp. 115–116 [Probl. Inf. Trans. (Engl. Transl.), 1973, vol. 9, no. 3, pp. 265–266].Google Scholar
  22. 22.
    Levin, L.A., Randomness Conservation Inequalities, Inf. Control, 1984, vol. 61, no. 1, pp. 15–37.Google Scholar
  23. 23.
    Bennett, C.H., Logical Depth and Physical Complexity, The Universal Turing MachineA Half-Century Survey, Herken, R., Ed., Oxford: Oxford Univ. Press, 1988, pp. 227–257.Google Scholar
  24. 24.
    Venkatesan, R. and Levin, L.A., Random Instances of a Graph Coloring Problem Are Hard, in Proc. of the 20th Ann. ACM Sympos. on Theory of Computing, 1988, pp. 217–222.Google Scholar
  25. 25.
    Gurevich, Yu., Matrix Decomposition Is Complete for the Average Case, in Proc. of the 31st Ann. IEEE Sympos. on Foundations of Computer Science, 1990, pp. 802–811.Google Scholar
  26. 26.
    Venkatesan, R. and Rajagopalan, S., Average Case Intractability of Matrix and Diophantine Problems, in Proc. of the 24th Ann. ACM Sympos. on Theory of Computing, 1992, pp. 632–642.Google Scholar
  27. 27.
    Wang, J., Average Case Completeness of a Word Problem for Groups, in Proc. of the 27th Ann. ACM Sympos. on Theory of Computing, 1995, pp. 325–334.Google Scholar
  28. 28.
    Goldreich, O., Impagliazzo, R., Levin, L.A., Venkatesan, R., and Zuckerman, D., Security Preserving Amplification of Hardness, in Proc. of the 31st Ann. IEEE Sympos. on Foundations of Computer Science, 1990, pp. 318–326.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • L. A. Levin
    • 1
  1. 1.Boston UniversityUSA

Personalised recommendations