Cellular and Molecular Neurobiology

, Volume 23, Issue 3, pp 293–303 | Cite as

1,4-Dihydropyridines as Calcium Channel Ligands and Privileged Structures

  • David J. Triggle


1. The 1,4-dihydropyridine nucleus serves as the scaffold for important cardiovascular drugs—calcium antagonists—including nifedipine, nitrendipine, amlodipine, and nisoldipine, which exert their antihypertensive and antianginal actions through actions at voltage-gated calcium channels of the CaV1 (L-type) class.

2. These drugs act at a specific receptor site for which defined structure-activity relationships exist, including stereoselectivity.

3. Despite the widespread occurrence of the CaV1 class of channel, the calcium antagonists exhibit significant selectivity of action in the cardiovascular system. This selectivity arises from a number of factors including subtype of channel, state-dependent interactions, pharmacokinetics, and mode of calcium mobilization.

4. The 1,4-dihydropyridine nucleus is also a privileged structure or scaffold that can, when appropriately decorated substituents, interact at diverse receptors and ion channels, including potassium and sodium channels and receptors of the G-protein class.

1,4-dihydropyridines antagonist activator ion channel voltage-gated ion channel calcium channel privileged structure pharmacophore 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, V. K., Tang, S. B., Wolowyk, M. W., and Knaus, E. E. (1990). Synthesis and activity of 1,4-dihydropyridine analogues of histamine H2-receptor antagonists. Drug Design Deliv. 6:101–109.Google Scholar
  2. Anrep, G. V., Kenawy, M. R., and Barsoum, G. S. (1949). The coronary vasodilator action of khellin. Am. Heart. J. 37:531–542.Google Scholar
  3. Bossert, F., and Vater, W. (1989). 1,4-Dihydropyridines—a basis for developing new drugs. Med. Res. Rev. 9:291–324.Google Scholar
  4. Catterall, W. A. (2000). Structure and function of voltage-gated calcium channels. Annu. Rev. Biochem. 65:493–531.Google Scholar
  5. Catterall, W. A., Chandy, K. G., and Gutman, G. A. (2002). The IUPHAR Compendium of Voltage-Gated Ion Channels. IUPHAR Media, Leeds, United Kingdom.Google Scholar
  6. Chin, M. H., Cioffi, C. L., Garay, M., Neale, R. F., Shetty, S. S., Del Grande, D., Mugrage, B., Sills, M. A., and Lipson, K. E. (1996). The unusual binding properties of the endothelin receptor antagonuit CGS 27830 distinguishes receptor/agonist interactions. J. Pharmacol. Exp. Ther. 276:74–83.Google Scholar
  7. Cooper, K., Fray, M. J., Parry, M. J., Richardson, K., and Steele, J. (1992). 1,4-Dihydropyridines as antagonists of platelet activating factor 1. Syntheses and structure-activity relationships of 2-(4-heterocyclyl) phenyl derivatives. J. Med. Chem. 35:3115–3129.Google Scholar
  8. Daly, J. W. (1998). Thirty years of discovering arthropod alkaloids in amphibian skin. J. Nat. Prod. 61: 162–172.Google Scholar
  9. Drocourt, L., Pascussi, J.-M., Asenat, E., Fabre, J.-M., Maurel, P., and Vilarem, M.-J. (2001). Calcium channel modulators of the dihydropyridine family are human pregnane X receptor activators and inducers of CYP3A, CYP2B, and CYP2C in human hepatocytes. Drug Metab. Dispos. 29:1325–1331.Google Scholar
  10. Elvelin, L. and Elmfeldt, D. (1989). Felodipine: A review of its pharmacological and clinical properties. Drugs Today 25:589–596.Google Scholar
  11. Epstein, M. (Ed.) (2002). Calcium Antagonists in Clinical Medicine. Hanley and Belfus, Philadelphia, PA.Google Scholar
  12. Evans, B. E., Rittle, K. E., Bock, M. G., DiPardo, R. M. et al. (1988). Methods for drug discovery: Development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem. 31:2235–2246.Google Scholar
  13. Fleckenstein, A. (1983). Calcium Antagonism in Heart and Smooth Muscle. Wiley, New York.Google Scholar
  14. Frank, C. A., Forst, J. M., Harris, R. J., Kau, S. T., Li, J. H., Ohmmachb, C.-J., Smith, R. W., Trainor, D. A., and Trivedi, S. (1993). Dihydropyridine KATP potassium channel openers. Bioorg. Med. Chem. Lett. 3:2725–2726.Google Scholar
  15. Godfraind, T., Salomone, S., Dessy, C., Verhelst, B., Dion, R., and Schoemerts, J. C. (1992). Selectivity scale of calcium antagonists in the human cardiovascular system based on in vitro studies. J. Cardiovasc. Pharmacol. 20(Suppl. 5): S34-S41.Google Scholar
  16. Goldmann, S., and Stoltefuss, J. (1991). 1,4-Dihydropyridines: Effects of chirality and conformation on the calcium antagonist and agonist activities. Angew. Chem. Int. Ed. 30: 1559–1578.Google Scholar
  17. Hamaguchi, N., True, T. A., Saussy, D. L., and Jeffs, P. W. (1996). Phenylalanine in the second membrane-spanning domain of α1a-adrenergic receptor determines subtype selectivity of dihydropyridine antagonists. Biochemistry 35:14312–14317.Google Scholar
  18. Hockerman, G. H., Peterson, B. Z., Johnson, B. D., and Catterall, W. A. (1997). Molecular determinants of drug binding and action on L-type calcium channels. Annu. Rev. Pharmacol. 37:361–396.Google Scholar
  19. Hu, H., and Marban, E. (1998). Isoform-specific inhibition of L-type calcium channels by dihydropyridines is independent of isoform-specific gating properties. Mol. Pharmacol. 53: 902–907.Google Scholar
  20. Ito, H., Klugbauer, H., and Hofmann, F. (1997). Transfer of the high affinity dihydropyridine sensitivity from L-type to non-L-type calcium channel. Mol. Pharmacol. 52:735–740.Google Scholar
  21. Jiang, J.-L., Li, A.-H., Jang, S.-Y., Chang, L., Melman, N., Moro, S., Ji, X.-D., Lobkovsky, M. B., Clardy, J. C., and Jacobson, K. A. (1999). Chiral resolution and stereospecificity of 6-phenyl-4-phenylethynyl-1,4-dihydropyridines as selective A3 adenosine receptor antagonists. J. Med. Chem. 42:3055–3065.Google Scholar
  22. Jiang, J.-L., van Rhee, A. M., Chang, L., Patchornik, A., Ji, X.-D., Evans, P., Melman, N., and Jacobson, K. A. (1997). Structure-activity relationships of 4-(phenylethynyl)-6-phenyl-1,4-dihydropyridines as highly selective A3 adenosine receptor antagonists. J. Med. Chem. 40:2596–2608.Google Scholar
  23. Jiang, J.-L., van Rhee, A. M., Melman, N., Ji, X.-D., and Jacobson, K. A. (1996). 6-Phenyl-1,4-dihydropyridine derivatives as potent and selective A3 adenosine receptor antagonists. J. Med. Chem. 39:4667–4675.Google Scholar
  24. Kwon, Y. W., and Triggle, D. J. (1991). Effects of Ca2+ channel ligands on [3H]QNB binding at m1 and m3 muscarinic receptors. Biochem. Pharmacol. 22:267–270.Google Scholar
  25. Lacinova, L., Klugbauer, N., and Hofmann, F. (2000). State-and isoform-dependent interaction of isradipine with the α1C L-type calcium channel. Pflug. Arch. 440:50–60.Google Scholar
  26. Lavilla, R. (2002). Recent developments in the chemistry of dihydropyridines. J. Chem. Soc., Perkin Trans. 1:1141–1156.Google Scholar
  27. Li, J. H. (2002). Phaarmacology of ZM244085: A novel bladder-selective dihydropyridine KATP channel activator. Cardiovasc. Drug Rev. 15:220–231.Google Scholar
  28. Lopez, M. G., Fonteriz, R. I., Gandia, L., de la Fuente, M., Villarroya, M., Garcia-Sancho, J., and Garcia, A. G. (1993). The nicotinic acetylcholine receptor of the bovine chromaffin cell, a new target for 1,4-dihydropyridines. Eur. J. Pharmacol. 247:199–207.Google Scholar
  29. Malstrom, R. E., Balmer, K. C., Weilitz, J., Nordlander, M., and Sjolander, M. (2001). Pharmacology of H 394/84, a dihydropyridine neuropeptide Y Y1 receptor antagonist in vivo. Eur. J. Pharmacol. 418:95–104.Google Scholar
  30. Mann, J. (1992). Murder Magic and Medicine. Oxford University Press, Oxford.Google Scholar
  31. Mayeux, P. R., Mais, D. E., and Halushka, P. V. (1991). Interactions of dihydropyridine Ca2+ channel agonists with the human thromoboxane A2/Prostaglandin H2 receptor. Eur. J. Pharmacol. 206:15–21, 1996.Google Scholar
  32. Morel, N., Buryi, V., Feron, O., Gomez, J.-P., Christen, M. O., and Godfraind, T. (1998). The action of calcium channel blockers on recombinant L-type calcium channel α1 subunits. Br. J. Pharmacol. 125:1005–1012.Google Scholar
  33. Nagarathnam, D., Wetzel, J. M., Miao, S. W., Marzbadi, M. R., Chiu, G., Wong, W. C., Hong, X., Fang, J., Forray, C., Branchek, T. A., Heydorn, W. A., Chang, R. S. L., Broten, T., Schorn, T. W., and Gluchowski, C. (1998). Design and synthesis of novel a1a adrenoceptor-selective dihydropyridine antagonists for the treatment of benign prostatic hyperplasia. J. Med. Chem. 41:5320–5333.Google Scholar
  34. Nelson, D. M., and Cox, M. M. (2000). Lehninger: Principles of Biochemistry. Worth Publishers, New York.Google Scholar
  35. Olivera, B. M. (1999). Speciation of cone smails and interspecific hyperdivergence of their venom peptides. Potential evolutionary significance of introns. Ann. N.Y. Acad. Sci. 870:223–237.Google Scholar
  36. Patchett, A. A., and Nargund, R. P. (2000). Privileged structures—An update. Ann. Rep. Med. Chem. 35:289–298.Google Scholar
  37. Pointdexter, G. S., Bruce, M. A., LeBoulluec, K. L., Monkouic, I., Martin, S. W., Parker, E. M., Iben, L. G., McGovern, R. T., Ortiz, A. A., Stanley, J. A., Mattson, G. K., Kozlowski, M., Arcuri, M., and Antal-Zimanyi, I. (2002). Dihydropyridine neuropeptide Y Y1 receptor antagonists. Biorg. Med. Chem. Lett. 12:379–382.Google Scholar
  38. Schreiber, S. (2000). Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287: 1964–1969.Google Scholar
  39. Shen, G. S., Layer, R. T., and McCabe, R. T. (2000). Conopeptides: From deadly venoms to novel therapeutics. Drug Discovery Today 5:98–106.Google Scholar
  40. Shibasaki, K., Uchida, W., Takizawa, K., Masuda, N., Okazaki, T., Inagaki, O., Asano, M., and Takenaka, T. (1997). Cardiovascular effects of YM 430,a 1,4-dihydropyridine derivative with beta-adrenoceptor blocking activity, in dogs and rats. Biol. Pharm. Bull. 20:230–236.Google Scholar
  41. Sinneger, M. J., Wang, Z., Grabner, M., Hering, S., Striessnig, J., Glossman, H., and Mitterdoerfer, J. (1997). Nine L-type amino acid residues confer full 1,4-dihydropyridine sensitivity to the neuronal calcium channel α1a subunit: Role of L-type Met1188. J. Biol. Chem. 272:27686–27693.Google Scholar
  42. Skeen, G. A., Twyman, R. E., and White, H. S. (1993). The dihydropyridine nitrendipine modulates N-methyl-D-aspartate receptor channel function in mammalian neurons. Mol. Pharmacol. 44:443–450.Google Scholar
  43. Skeen, G. A., White, H. S., and Twyman, R. E. (1994). The dihydropyridine nitrendipine reduces N-methyl-D-aspartate (NMDA)-evoked currents of rodent cortical neurons through a direct interaction with the NMDA receptor-associated ion channel. J. Pharmacol. Exp. Ther. 271:30–38.Google Scholar
  44. Striessnig, J., Grabner, M., Mitterdorfer, J., Hering, S., Sinneger, M. J., and Glossman, H. (1998). Structural basis of drug binding to L Ca2+ channels. Trends Pharmacol. Sci. 19:108–115.Google Scholar
  45. Sunkel, C. E., de Casa-Juana, M. D. de, Cillero, F. J., Priego, J. G., and Ortega, M. P. (1988). Synthesis, platelet aggregation inhibitory activity, and in vivo antithrombotic activity of new 1,4-dihydropyridines. J. Med. Chem. 31:1886–1890.Google Scholar
  46. Sunkel, C. E., Casa-Juana, M. F. de, Santos, L., Gomez, M. M., Villarroya, M., Gonzalez-Morales, M. A., Priego, J. G., and Ortega, M. P. (1990). 4-Alkyl-1,4-dihydropyridines derivatives as specific PAF-Acether antagonists. J. Med. Chem. 33:3205–3210.Google Scholar
  47. Triggle, D. J. (1990). Calcium antagonists. History and perspective. Stroke 21(Suppl. IV): IV49-IV58.Google Scholar
  48. Triggle, D. J. (2002). Mechanisms of action of calcium antagonists. In Epstein, M. (ed.), Calcium Antagonists in Clinical Medicine, Hanley and Belfus, Philadelphia, pp. 1–32.Google Scholar
  49. Triggle, D. J. (2003a). The 1,4-dihydropyridine nucleus: A pharmacophoric template. MiniRev. Med. Chem. 3:166–175.Google Scholar
  50. Triggle, D. J. (2003b). 1,4-Dihydropyridine calcium channel ligands: Selectivity of action. Drug Discovery Research. 58: 5–17.Google Scholar
  51. Triggle, D. J., Langs, D. A., and Janis, R. A. (1989). Ca2+ channel ligands: Structure-function relationships of the 1,4-dihydropyridines. Med. Res. Rev. 9:123–180.Google Scholar
  52. Trivedi, S., Potter-Lee, L., McConville, M. W., Li, J. H., Ohnmacht, C. J., Trainor, D. A., and Kau, S. T. (1995). K-Channel opening activity of dihydropyridine ZM244085: Effect on 86Rb efflux and [3H]-P1075 binding in urinary tract smooth muscle. Res. Commun. Mol. Path. Pharmacol. 88:137–155.Google Scholar
  53. van Rhee, A. M., Jiang, J.-L., Melman, N., Olah, M. E., Stiles, G. L., and Jacobson, K. A. (1996). Interaction of 1,4-dihydropyridines and pyridine derivatives with adenosine receptors; selectivity for A3 receptors. J. Med. Chem. 39:2980–2989.Google Scholar
  54. Welling, A., Kwan, Y. K., Bosse, E., Flockerzi, V., Hofmann, F., and Kass, R. S. (1993). Subunit-dependent modulation of recombinant L-type calcium channels. Circ. Res. 73:974–980.Google Scholar
  55. Wess, G., Urmann, M., and Sickenerger, B. (2001). Medicinal chemistry: Challenges and opportunities. Angew. Chem. 40:3341–3350.Google Scholar
  56. Wiley, R. A., and Rich, D. H. (1993). Peptidomimetics derived form natural products. Med. Res. Rev. 13:327–384.Google Scholar
  57. Wong, W. C., Chiu, G., Wetzel, J. M., Marzabadi, M. R., Nagarathnam, D. Wang, D., Fang, J., Mko, S. W., Hong, X., Forray, C., Vaysse, P. J.-J., Branchek, T. A., and Gluchowski, C. (1998). Identification of a dihydropyridine as potent α1a adrenoceptor-selective antagonist that inhibits phenylephrine-induced contraction of the human prostate. J. Med.Chem. 41:2643–2650.Google Scholar
  58. Zuhlke, R. D., Bouron, A., Soldatov, N. M., and Reuter, H. (1998). Ca2+ channel sensitivity towards the blocker isradipine is affected by the alternative splicing of the human α1c subunit gene. FEBS Lett. 427:220–234.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • David J. Triggle
    • 1
  1. 1.SUNY at BuffaloBuffaloUSA

Personalised recommendations