Environmental and Resource Economics

, Volume 24, Issue 4, pp 291–312

Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation

  • Uwe A. Schneider
  • Bruce A. McCarl
Article

Abstract

Use of biofuels diminishes fossil fuelcombustion thereby also reducing net greenhousegas emissions. However, subsidies are neededto make agricultural biofuel productioneconomically feasible. To explore the economicpotential of biofuels in a greenhouse gasmitigation market, we incorporate data onproduction and biofuel processing for thedesignated energy crops switchgrass, hybridpoplar, and willow in an U.S. AgriculturalSector Model along with data on traditionalcrop-livestock production and processing, andafforestation of cropland. Net emissioncoefficients on all included agriculturalpractices are estimated through crop growthsimulation models or taken from the literature. Potential emission mitigation policies ormarkets are simulated via hypothetical carbonprices. At each carbon price level, theAgricultural Sector Model computes the newmarket equilibrium, revealing agriculturalcommodity prices, regionally specificproduction, input use, and welfare levels,environmental impacts, and adoption ofalternative management practices such asbiofuel production. Results indicate no rolefor biofuels below carbon prices of $40 perton of carbon equivalent. At these incentivelevels, emission reductions via reduced soiltillage and afforestation are more costefficient. For carbon prices above $70,biofuels dominate all other agriculturalmitigation strategies.

agricultural sector model alternative energy biofuel economics biomass power plants greenhouse gas emission mitigation short rotation woody crops switchgrass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. M., R. J. Alig, J. M. Callaway and B. A. McCarl (1996), The Forest and Agricultural Sector Optimization Model (FASOM): Model Structure and Policy Applications. USDA Forest Service Report PNW-RP-495.Google Scholar
  2. Alig, R. J., D. M. Adams and B. A. McCarl (1998), ‘Impacts of Incorporating Land Exchanges Between Forestry and Agriculture in Sector Models’, Journal of Agricultural and Applied Economics 30(2), 389-401.Google Scholar
  3. Badin, J. and J. Kirschner (November 1998), ‘Biomass Greens U.S. Power Production’, Renewable Energy World 1(3), 40-45.Google Scholar
  4. Benson, V (February 1999), National Resource Conservation Service, U.S. Department of Agriculture Crop Enterprise Budgets, Personal Communication.Google Scholar
  5. Chang, C. C., B. A. McCarl, J. W. Mjelde and J. W. Richardson (1992), ‘Sectoral Implications of Farm Program Modifications’, American Journal of Agricultural Economics 74, 38-49.CrossRefGoogle Scholar
  6. Coble, K. H., C. C. Chang, B. A. McCarl, B. R. Eddleman (1992), ‘Assessing Economic Implications of New Technology: The Case of Cornstarch-Based Biodegradable Plastics’, Review of Agricultural Economics 14, 33-43.CrossRefGoogle Scholar
  7. Cole, C. V., C. Cerri, K. Minami, A. Mosier, N. Rosenberg, D. Sauerbeck, J. Dumanski, J. Duxbury, J. Freney, R. Gupta, O. Heinemeyer, T. Kolchugina, J. Lee, K. Paustian, D. Powlson, N. Sampson, H. Tiessen, M. van Noordwijk and Q. Zhao (1996), ‘Agricultural options for the mitigation of greenhouse gas emissions’ Chapter 23, in Climate Change 1995: Impacts, Adaptation, and Mitigation of Climate Change: Scientific-Technical Analyses, prepared by IPCC Working Group II (pp. 726-771). Cambridge, England: Cambridge University Press.Google Scholar
  8. Council of Economic Advisors (CEA) (July 1998), The Kyoto Protocol and the President's Policies to Address Climate Change: Administration Economic Analysis [Online]. Available HTTP:www. whitehouse.gov/WH/New/html/augnew98.html#Kyoto.Google Scholar
  9. Cushman, J., G. Marland and B. Schlamadinger (1995), ‘Biomass Fuels, Energy, Carbon, and Global Climate Change’, in Energy and Global Climate Change, Oak Ridge National Laboratory Review 28(2 & 3), special issue (pp. 14-21) [Online]. Available HTTP: www.ornl.gov/ ORNLReview/rev28-2/text/contents.htm.Google Scholar
  10. Gallagher, P. and D. Johnson (1999), ‘Some New Ethanol Technology: Cost Competition and Adoption Effects in the Petroleum Market’, The Energy Journal 20(2), 89-120.Google Scholar
  11. IPCC (2000), ‘Land Use, Land-use Change, and Forestry’, in: Robert T. Watson, Ian R. Noble, Bert Bolin, N. H. Ravindranath, David J. Verardo and David J. Dokken, eds., Special Report of the Intergovernmental Panel on Climate Change, Geneva Switzerland (p. 375). U.K.: Cambridge University Press.Google Scholar
  12. Kline D., T. Hargrove and C. Vanderlan (1998), ‘Treatment of Biomass Fuels in Carbon Emissions Trading Systems’, Washington, DC: Center for Clean Air Policy, 7 pp., NREL Report No. 32140.Google Scholar
  13. Lal, R., J. M. Kimble, R. F. Follett and C. V. Cole (1997), The Potential of U.S. Cropland to Sequester Carbon and Mitigate the Greenhouse Effect, 128 pp. Chelsea MI: Sleeping Bear Press Inc.Google Scholar
  14. Mann, M. K. and P. L. Spath (1997), Life Cycle Assessment of a Biomass Gasification Combined-Cycle Power System. National Renewable Energy Laboratory, Golden, CO, TP-430-23076.Google Scholar
  15. Marland, G. and B. Schlamadinger (1997), ‘Forests for Carbon Sequestration or Fossil Fuel Substitution A Sensitivity Analysis’, Biomass and Bioenergy 13, 389-397.CrossRefGoogle Scholar
  16. Marland, G., B. A. McCarl and U. A. Schneider (October 2001), ‘Soil Carbon: Policy and Economics’, Climatic Change 51(1), 101-117.CrossRefGoogle Scholar
  17. McCarl, B. A., C. C. Chang, J. D. Atwood and W. I. Nayda (2001), Documentation of ASM: The U.S. Agricultural Sector Model, Unpublished Report, Texas A&M University [Online]. Available HTTP: ageco.tamu.edu/faculty/mccarl/asm.htm.Google Scholar
  18. McCarl, B. A. (1998), Carbon Sequestration via Tree Planting on Agricultural Lands: An Economic Study of Costs and Policy Design Alternatives, Paper presented at the Energy Modeling Forum, Snowmass CO, 3-11 August [Online]. Available HTTP: ageco.tamu.edu/faculty/mccarl/papers/ 676.pdf.Google Scholar
  19. McCarl, B. A. and B. C. Murray (2001), Harvesting the Greenhouse: Comparing Biological Sequestration with Emissions Offsets. Department of Agricultural Economics, Texas A&M University, College Station, TX [Online]. Available HTTP: ageco.tamu.edu/faculty/mccarl/papers/885.pdf.Google Scholar
  20. McCarl, B. A. and U. A. Schneider (1999), ‘Curbing Greenhouse Gases: Agriculture's Role’, Choices First Quarter, 9-12.Google Scholar
  21. McCarl, B. A. and U. A. Schneider (2000), ‘U.S. Agriculture's Role in a Greenhouse Gas Mitigation World: An Economic Perspective’, Review of Agricultural Economics 22(1), 134-159.CrossRefGoogle Scholar
  22. McCarl, B. A. and U. A. Schneider (2001), ‘The Cost of Greenhouse Gas Mitigation in U.S. Agriculture and Forestry’, Science, Forthcoming.Google Scholar
  23. McCarl, B. A., D. M. Adams and R. J. Alig (2000), ‘Analysis of Biomass Fueled Electrical Powerplants: Implications in the Agricultural & Forestry Sectors’, Annals of Operations Research 94, 37-55.CrossRefGoogle Scholar
  24. MacCracken, C. N., J. A. Edmonds, S. H. Kim and R. D. Sands (May 1999), ‘The Economics of the Kyoto Protocol, in The Costs of the Kyoto Protocol: A Multi-Model Evaluation’, Special Issue of The Energy Journal, 25-72.Google Scholar
  25. Mendelsohn, R and J. E. Neumann (1999), The Impact Of Climate Change On The United States Economy, 344 pp. Cambridge University Press.Google Scholar
  26. Moulton, R. J. and K. B. Richards (1990), Costs of Sequestering Carbon Through Tree Planting and Forest Management in the U.S. Washington DC: USDA Forest Service, General Technical Report WO-58.Google Scholar
  27. Pautsch, G. R., L. A. Kurkalova, B. Babcock, and C. L. Kling (April 2001), ‘The Efficiency of Sequestering Carbon in Agricultural Soils’, Contemporary Economic Policy 19, 123-134.CrossRefGoogle Scholar
  28. Reilly, J. M. (2002), Agriculture: The Potential Consequences of Climate Variability and Change for the United States, 136 pp. Cambridge: Cambridge University Press.Google Scholar
  29. Rosenberg, N. J., R. C. Izaurralde and E. L. Malone, eds. (1999), Carbon Sequestration in Soils: Science, Monitoring, and Beyond. Proceedings of the St. Michaelis Workshop, Batelle Pacific Northwest Laboratory.Google Scholar
  30. Samson, R. and P. Duxbury, M. Drisdelle, and C. Lapointe (2000), ‘Assessment of Pelletized Biofuels’, PERD Program, Natural Resources Canada, Contract 23348-8-3145/001/SQ.Google Scholar
  31. Schneider, U. A. (December 2000), Agricultural Sector Analysis on Greenhouse Gas Emission Mitigation in the U.S. PhD Dissertation, Department of Agricultural Economics, Texas A&M University.Google Scholar
  32. Sedjo, R. A. (Feb 2000), ‘Forests, A Tool to Moderate Global Warming?’, Environment 13, 1, 14.Google Scholar
  33. Shapouri, H (Feb 2000), Personal Communication USDA Office of Energy, Washington D.C.Google Scholar
  34. Spath, P. L and M. K. Mann (1999), Life Cycle Assessment of Coal-fired Power Production. National Renewable Energy Laboratory, Golden, CO, TP-570-25119.Google Scholar
  35. Stavins, R. N. (September 1999), ‘The Costs of Carbon Sequestration: A Revealed-Preference Approach’, American Economics Review 89(4), 994-1009.CrossRefGoogle Scholar
  36. United Nations, Framework Convention on Climate Change (March 1998), Kyoto Protocol. Climate Change Secretariat (UNFCCC) [Online]. Available HTTP: www.unfccc.de/resource/convkp. html.Google Scholar
  37. U.S. Environmental Protection Agency (May 1999a), Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-1997. Washington DC: EPA-236-R-99-003.Google Scholar
  38. U.S. Environmental Protection Agency (September 1999b), U.S. Methane Emissions 1990-2020: Inventories, Projections, and Opportunities for Reductions.Washington DC: EPA 430-R-99-013.Google Scholar
  39. U.S. Global Change Research Program (2000), U.S. National Assessment, The Potential Consequences of Climate Variability and Change [Online]. Available HTTP: www.nacc.usgcrp. gov.Google Scholar
  40. Walsh, M. E., D. de la Torre Ugarte, S. Slinsky, R. L. Graham, H. Shapouri and D. Ray (1998), ‘Economic Analysis of Energy Crop Production in the U.S.-Location, Quantities, Price and Impacts on the Traditional Agricultural Crops’, Bioenergy 98: Expanding Bioenergy Partnerships 4-8 October 2, 1302-1310. Madison Wisconsin.Google Scholar
  41. Wang, M. Q. (August 1999), GREET 1.5-Transportation Fuel Cycle Model. Argonne National Laboratory Report ANL/ESD-39.Google Scholar
  42. Wang, W., C. Saricks and D. Santini (January 1999), Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions. Center for Transportation Research, Argonne National Laboratory, ANL/ESD-38.Google Scholar
  43. West, T. O. and W. M. Post (2000), ‘Soil Organic Carbon Sequestration Rates for Crops with Reduced Tillage and Enhanced Rotation’, Soil Science Society of America Journal 66, 1930-1946.CrossRefGoogle Scholar
  44. Williams, J. R., C. A. Jones, J. R. Kiniry and D. A. Spaniel (1989), ‘The EPIC Crop Growth Model’, Transactions of The American Society of Agricultural Engineers 32, 497-511.Google Scholar
  45. Yacobucci, B. D. and J. Womach (March 2000), RL30369: Fuel Ethanol: Background and Public Policy Issues, The National Council for Science and the Environment, Congressional Research Service Report, Washington, D.C.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Uwe A. Schneider
    • 1
  • Bruce A. McCarl
    • 2
  1. 1.Research Unit Sustainability and Global ChangeHamburg UniversityHamburgGermany
  2. 2.Department of Agricultural EconomicsTexas A&M UniversityCollege StationUSA

Personalised recommendations