Advertisement

Strictly and Roughly Convexlike Functions

  • H.X. Phu
Article

Abstract

A function \(f:D \subseteq \mathbb{R}^n \to \mathbb{R}\) is said to be strictly and roughly convexlike with respect to the roughness degree r > 0 (for short, strictly r-convexlike) provided that, for all x0, x1D satisfying ||x0x1|| > r, there exists a λ ∈ ]0, 1[ such that

$$f((1 - \lambda )x_0 + \lambda x_1 ) < (1 - \lambda )f(x_0 ) + \lambda f(x_1 ).$$
.

The most important property of strictly r-convexlike functions is that the diameter of the set of global minimizers is not greater than r. This property is needed in another paper for obtaining the rough stability of optimal solutions to nonconvex parametric optimization problems. Moreover, if f is supposed to be lower semicontinuous, then each r-local minimizer x*, defined by

$$f(x*) \leqslant f(x),{\text{ for all }}x \in D{\text{ with }}\left\| {x - x*} \right\| \leqslant r,$$

is a global minimizer of f. In this paper, necessary and sufficient conditions for a function to be strictly r-convexlike are stated. In particular, the class of strictly γ -convex functions is considered.

Generalized convexity strictly and roughly convexlike functions strictly γ-convex functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MALANOWSKI, K., Stability of Solutions to Convex Problems of Optimization, Lecture Notes in Control and Information Sciences, Springer Verlag, Berlin, Germany, Vol. 93, 1987.Google Scholar
  2. 2.
    PHU, H.X., Zur Stetigkeit der Lösung der adjungierten Gleichung bei Aufgaben der optimalen Steuerung mit Zustandsbeschränkungen, Zeitschrift für Analysis und ihre Anwendungen, Vol. 3, pp. 527-539, 1984.Google Scholar
  3. 3.
    PICKENHAIN, S., and TAMMER, K., Sufficient Conditions for Local Optimality in Multidimensional Control Problems with State Restrictions, Zeitschrift für Analysis und ihre Anwendungen, Vol. 10, pp. 397-405, 1991.Google Scholar
  4. 4.
    HU, T. C., KLEE, V., and LARMAN, D., Optimization of Globally Convex Functions, SIAM Journal on Control and Optimization, Vol. 27, pp. 1026-1047, 1989.Google Scholar
  5. 5.
    PHU, H.X., γ-Subdifferential and γ-Convexity of Functions on the Real Line, Applied Mathematics and Optimization, Vol. 27, pp. 145-160, 1993.Google Scholar
  6. 6.
    PHU, H.X., γ-Subdifferential and γ-Convexity of Functions on a Normed Space, Journal of Optimization Theory and Applications, Vol. 85, pp. 649-676, 1995.Google Scholar
  7. 7.
    PHU, H.X., Representation of Bounded Convex Sets by the Rational Convex Hull of Its γ-Extreme Points, Numerical Functional Analysis and Optimization, Vol. 15, pp. 915-920, 1994.Google Scholar
  8. 8.
    PHU, H.X., BOCK, H. G., and PICKENHAIN, S., Rough Stability of Solutions to Nonconvex Optimization Problems, Optimization, Dynamics, and Economic Analysis, Edited by E. J. Dockner, R. F. Hartl, M. Luptacik, and G. Sorger, Physica Verlag, Heidelberg, Germany, pp. 22-35, 2000.Google Scholar
  9. 9.
    PHU, H.X., HAI, N. N., and AN, P.T., Piecewise Constant Roughly Convex Functions, Journal of Optimization Theory and Applications (to appear).Google Scholar
  10. 10.
    HARTWIG, H., Local Boundedness and Continuity of Generalized Convex Functions, Optimization, Vol. 26, pp. 1-13, 1992.Google Scholar
  11. 11.
    SÖLLNER, B., Eigenschaften γ-grobkonvexer Mengen und Funktionen, Diplomarbeit, Universität Leipzig, Leipzig, Germany, 1991.Google Scholar
  12. 12.
    PHU, H.X., Six Kinds of Roughly Convex Functions, Journal of Optimization Theory and Applications, Vol. 92, pp. 357-375, 1997.Google Scholar
  13. 13.
    PHU, H. X., and HAI, N.N., Some Analytical Properties of γ-Convex Functions on the Real Line, Journal of Optimization Theory and Applications, Vol. 91, pp. 671-694, 1996.Google Scholar
  14. 14.
    FAVARD, J.M., Problèmes d'Extremums Relatifs aux Courbes Convexes, Annales Scientifiques de l'École Normale Supérieure, Vol. 46, pp. 344-369, 1929.Google Scholar
  15. 15.
    KRIPFGANZ, A., Favard's Fonction Penetrante: A Roughly Convex Function, Optimization, Vol. 38, pp. 329-342, 1996.Google Scholar
  16. 16.
    BRACH, A., Zur Analysis von Favard's Fonction Penetrante, Diplomarbeit, Universität Leipzig, Leipzig, Germany, 1994.Google Scholar
  17. 17.
    FOCKE, J., and KLÖTZLER, R., Ein neuer Beitrag zur Fonction Penetrante, Manuscript, Universität Leipzig, Leipzig, 1987.Google Scholar
  18. 18.
    FOCKE, J., Flächenminimale Inpolygone des Einheitskreises und die Fonction Penetrante von Favard, Manuscript, Universität Leipzig, Leipzig, 1987.Google Scholar
  19. 19.
    KRIPFGANZ, A., The Generalized Favard Problem, Beiträge zur Algebra und Geometrie, Vol. 36, pp. 185-202, 1995.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • H.X. Phu
    • 1
  1. 1.Institute of MathematicsHanoiVietnam

Personalised recommendations