An Incremental Algorithm for the Maximum Flow Problem

  • S. Kumar
  • P. Gupta
Article

Abstract

An incremental algorithm may yield an enormous computational time saving to solve a network flow problem. It updates the solution to an instance of a problem for a unit change in the input. In this paper we have proposed an efficient incremental implementation of maximum flow problem after inserting an edge in the network G. The algorithm has the time complexity of O((Δn)2m), where Δn is the number of affected vertices and m is the number of edges in the network. We have also discussed the incremental algorithm for deletion of an edge in the network G.

incremental computation maximum flow combinatorial optimization network flows 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R. K., Magnati, T. and Orlin, J. B.: Network Flows, Prentice-Hall, Englewood Cliffs, 1993.Google Scholar
  2. 2.
    Cheriyan, J. and Maheshawari, S. N.: Analysis of preflow push algorithms for maximum network flow, SIAM J. Comput. 18 (1989), 1057–1086.Google Scholar
  3. 3.
    Cherkasky, R. V.: An algorithm for constructing maximum flows in networks with complexity of O(V2 \(\sqrt {\left( E \right)}\)), Math. Methods Solution Econ. Probl. 7 (1977), 112–125.Google Scholar
  4. 4.
    Dinic, E. A.: Algorithm for solution of a problem of a maximum flow in networks with power estimation, Soviet Math. Dokl. 11 (1970), 1277–1280.Google Scholar
  5. 5.
    Edmonds, J. and Karp, R. M.: Theoretical improvements in algorithmic efficiency for network flow problems, J. Assoc. Comput. Mach. 19 (1972), 248–264.Google Scholar
  6. 6.
    Ford, L. R. and Fulkerson, D. R.:Maximal flows through a network, IRE Trans. Inform. Theory 2 (1956), 117–119.Google Scholar
  7. 7.
    Gabow, H. N.: Scaling algorithms for network problems, J. Comput. System Sci. 31 (1985), 148–168.Google Scholar
  8. 8.
    Galil, Z.: An O(V5/3 E 2/3) algorithm for the maximum flow problem, Acta Inform. 14 (1980), 221–242.Google Scholar
  9. 9.
    Galil, Z. and Naamad, A.: An O(EV (log V ) 2 ) algorithm for the maximum flow problem, J. Comput. System Sci. 21 (1980), 203–217.Google Scholar
  10. 10.
    Goldberg, A. V.: A new max-flow algorithm, Tech. Rep. MIT/LCS/TM-291, Laboratory for Comp. Sci., MIT, Cambridge, Mass., 1985.Google Scholar
  11. 11.
    Goldberg, A. V. and Tarjan R. E.: A new approach to the maximum flow problem, J. Assoc. Comput. Mach. 35 (1988), 921–940.Google Scholar
  12. 12.
    Goldberg, A. V.: Processor efficient implementation of a maximum flow algorithm, Inform. Process. Lett. 38 (1991), 179–185.Google Scholar
  13. 13.
    Karzanov, A. V.: Determining the maximal flow in a network by the method of preflows, Soviet Math. Dokl. 15 (1974), 434–437.Google Scholar
  14. 14.
    Malhotra, V. M., Kumar, P. and Maheshwari, M. N.: An O(|V|3) algorithm for finding maximum flows in networks, Inform. Process. Lett. 57 (1978), 1251–1254.Google Scholar
  15. 15.
    Shiloach, Y. and Vishkin, U.: An O(n 2 log n) parallel max-flow algorithm, J. Algorithms 3 (1982), 128–146.Google Scholar
  16. 16.
    Tarjan, R. E.: A simple version of Karzanov's blocking flow algorithm, Oper. Res. Lett. 2 (1984) 265–268.Google Scholar
  17. 17.
    Goldberg, A. V. and Tarjan, R. E.: A new approach to the maximum flow problem, Proc. 18th ACM Sympos. Theory of Computing, ACM, New York, 1986, pp. 136–146.Google Scholar
  18. 18.
    Yang, H. H. and Wang, D. F.: Processor efficient implementation of a maximum flow algorithm, IEEE Trans. CAD 15 (1996), 1533–1540.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • S. Kumar
    • 1
  • P. Gupta
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology KanpurKanpur-India

Personalised recommendations