Space Science Reviews

, Volume 104, Issue 1–4, pp 253–346 | Cite as

Magnetospheric and Plasma Science with Cassini-Huygens

  • M. Blanc
  • S. Bolton
  • J. Bradley
  • M. Burton
  • T.E. Cravens
  • I. Dandouras
  • M.K. Dougherty
  • M.C. Festou
  • J. Feynman
  • R.E. Johnson
  • T.G. Gombosi
  • W.S. Kurth
  • P.C. Liewer
  • B.H. Mauk
  • S. Maurice
  • D. Mitchell
  • F.M. Neubauer
  • J.D. Richardson
  • D.E. Shemansky
  • E.C. Sittler
  • B.T. Tsurutani
  • Ph. Zarka
  • L.W. Esposito
  • E. Grün
  • D.A. Gurnett
  • A.J. Kliore
  • S.M. Krimigis
  • D. Southwood
  • J.H. Waite
  • D.T. Young


Magnetospheric and plasma science studies at Saturn offer a unique opportunity to explore in-depth two types of magnetospheres. These are an ‘induced’ magnetosphere generated by the interaction of Titan with the surrounding plasma flow and Saturn's ‘intrinsic’ magnetosphere, the magnetic cavity Saturn's planetary magnetic field creates inside the solar wind flow. These two objects will be explored using the most advanced and diverse package of instruments for the analysis of plasmas, energetic particles and fields ever flown to a planet. These instruments will make it possible to address and solve a series of key scientific questions concerning the interaction of these two magnetospheres with their environment.

The flow of magnetospheric plasma around the obstacle, caused by Titan's atmosphere/ionosphere, produces an elongated cavity and wake, which we call an ‘induced magnetosphere’. The Mach number characteristics of this interaction make it unique in the solar system. We first describe Titan's ionosphere, which is the obstacle to the external plasma flow. We then study Titan's induced magnetosphere, its structure, dynamics and variability, and discuss the possible existence of a small intrinsic magnetic field of Titan.

Saturn's magnetosphere, which is dynamically and chemically coupled to all other components of Saturn's environment in addition to Titan, is then described. We start with a summary of the morphology of magnetospheric plasma and fields. Then we discuss what we know of the magnetospheric interactions in each region. Beginning with the innermost regions and moving outwards, we first describe the region of the main rings and their connection to the low-latitude ionosphere. Next the icy satellites, which develop specific magnetospheric interactions, are imbedded in a relatively dense neutral gas cloud which also overlaps the spatial extent of the diffuse E ring. This region constitutes a very interesting case of direct and mutual coupling between dust, neutral gas and plasma populations. Beyond about twelve Saturn radii is the outer magnetosphere, where the dynamics is dominated by its coupling with the solar wind and a large hydrogen torus. It is a region of intense coupling between the magnetosphere and Saturn's upper atmosphere, and the source of Saturn's auroral emissions, including the kilometric radiation. For each of these regions we identify the key scientific questions and propose an investigation strategy to address them.

Finally, we show how the unique characteristics of the CASSINI spacecraft, instruments and mission profile make it possible to address, and hopefully solve, many of these questions. While the CASSINI orbital tour gives access to most, if not all, of the regions that need to be explored, the unique capabilities of the MAPS instrument suite make it possible to define an efficient strategy in which in situ measurements and remote sensing observations complement each other.

Saturn's magnetosphere will be extensively studied from the microphysical to the global scale over the four years of the mission. All phases present in this unique environment — extended solid surfaces, dust and gas clouds, plasma and energetic particles — are coupled in an intricate way, very much as they are in planetary formation environments. This is one of the most interesting aspects of Magnetospheric and Plasma Science studies at Saturn. It provides us with a unique opportunity to conduct an in situ investigation of a dynamical system that is in some ways analogous to the dusty plasma environments in which planetary systems form.


Solar Wind Plasma Sheet Radio Occultation Magnetospheric Plasma Outer Magnetosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acuña, M. H. and Ness, N. F.: 1980, The magnetic field of Saturn: Pioneer 11 observations, Science 207, 444.ADSGoogle Scholar
  2. Atreya, S. K.: 1986, Atmospheres and ionospheres of the outer planets and their satellites, Springer Verlag, Berlin.Google Scholar
  3. Atreya, S. K., Waite, Jr., J. H., Donahue, T. M., Nagy, A. F., and McConnell, J. C.: 1984, in T. Gehrels and M. S. Matthews (eds.), Theory, measurements, and models of the upper atmosphere and ionosphere of Saturn, in 'Saturn', Univ. of Ariz. Press, Tucson, pp. 239–277.Google Scholar
  4. Bagenal, F.: 1992, Giant planet magnetospheres, Ann. Rev. Earth & Planet. Sci. 20, 289.ADSCrossRefGoogle Scholar
  5. Banaszkewicz, M., Lara, L. M., Rodrigo, R., Lopez-Moreno, J. J., and Molina-Cuberos, G. J.: 1999, The upper atmosphere and ionosphere of Titan: A coupled model, Adv. Space Res. 26, 1547–1550.ADSCrossRefGoogle Scholar
  6. Barbosa, D. D.: 1992, Theory and observations of electromagnetic ion cyclotron waves in Saturn's inner magnetosphere, J. Geophys. Res. 98, 9345.ADSGoogle Scholar
  7. Barbosa, D. D.: 1990, Radial diffusion of low-energy plasma ions in Saturn's magnetosphere, J. Geophys. Res. 95, 17167–17777.ADSGoogle Scholar
  8. Barbosa, D. D. and Kurth, W. S.: 1993, On the Generation of Plasma Waves in Saturn's Inner Magnetosphere, J. Geophys. Res. 98, 9351.ADSGoogle Scholar
  9. Behannon, R. P., Lepping, P., and Ness, N. F.: 1983, Structure and dynamics of Saturn's outer magnetosphere and boundary regions, J. Geophys. Res. 88, 8791.ADSGoogle Scholar
  10. Behannon, R. P., Connerney, J. E. P., and Ness, N. F.: 1991, Saturn's magnetic tail: structure and dynamics, Nature 292, 753.ADSCrossRefGoogle Scholar
  11. Bird, M. K., Dutta-Roy, R., Asmar, S. W., and Rebold, T. A.: 1997, Possible detection of Titan's ionosphere from Voyager 1 radio occutation observations, Icarus 130, 426.ADSCrossRefGoogle Scholar
  12. Brecht, S. H., Luhmann, J. G., Larson, D. J.: 2000, Simulation of the Saturnian magnetospheric interaction with Titan, J. Geophys. Res. 105, 13119–13130.ADSCrossRefGoogle Scholar
  13. Bridge, H. S., Bagenal, F., Belcher, J. W., Lazarus, A. J., Mc Nutt, R. L., Sullivan, J. D., Gazis, P. R., Hartle, R. E., Ogilvie, K. W., Scudder, J. D., Sittler, E. C., Eviatar, A., Siscoe, G. L., Goertz, C. K., and Vasyliunas, V. M.: 1982, Plasma observations near Saturn: Initial results from Voyager 2, Science 215, 563.ADSGoogle Scholar
  14. Broadfoot, A. L. et al.: 1981, Extreme ultraviolet observations from Voyager 1 encounter with Saturn, Science 212, 206–211.ADSGoogle Scholar
  15. Carlson, R. W., Johnson, R. E., Anderson, M. S.: 1999, Sulfuric acid on Europa and the radiolytic sulfur cycle, DPS abstract.Google Scholar
  16. Connerney, J. E. P. and Waite, Jr., J. H.: 1984. New model of Saturn's ionosphere with an influx of water from the rings, Nature 312, 136.ADSGoogle Scholar
  17. Connerney, J. E. P, Ness, N. F., and Acuña, M. H.: 1982, Zonal harmonic model of Saturn's magnetic field from Voyager 1 and 2 observations, Nature 297, 44.ADSCrossRefGoogle Scholar
  18. Connerney, J. E. P., Acuña, M. H., and Ness, N. F.: 1983, Currents in Saturn's magnetosphere, J. Geophys. Res.,88, 8779–8789.ADSGoogle Scholar
  19. Connerney, J. E. P., Acuña, M. H. and Ness, N. F.: 1981, Saturn's ring current and inner magnetosphere, Nature 292, 724.ADSCrossRefGoogle Scholar
  20. Cravens, T. E., Keller, C. N. and Gan, L.: 1992, The ionosphere of Titan and its interaction with Saturnian magnetospheric electrons, in Proceedings of Symposium on Titan, Toulouse, France, Sept. 1991, ESA SP-338, p. 273.Google Scholar
  21. Cravens, T. E., Lindgren, C.J. and Ledvina, S.A.: 1998, A two-dimensional multifluid MHD model of Titan's plasma environment, Planet. Space Sci. 46, 1193–1206.ADSCrossRefGoogle Scholar
  22. Davis, Jr., L. and Smith, E. J.: 1990, A model of Saturn's magnetic field based on all available data, J. Geophys. Res. 95, 15257.ADSGoogle Scholar
  23. Davis, Jr., L. and Smith, E. J.: 1986, New models of Saturn's magnetic field using Pioneer 11 vector helium magnetometer data, J. Geophys. Res. 91, 1373.ADSGoogle Scholar
  24. Demars, H.G.: 1995, A generalized transport model of plasma flow between Saturn's ionosphere and inner magnetosphere, J. Geophys. Res. 100, 23533.ADSCrossRefGoogle Scholar
  25. Dougherty, M. K.: 1999, Detached high density plasma regions in Saturn's magnetosphere, private communication.Google Scholar
  26. Eviatar, A., Siscoe, G. L., Scudder, J. D., Sittler, E. C., and Sullivan, J. D.: 1982, The plumes of Titan, J. Geophys. Res. 87, 8091–8103.ADSGoogle Scholar
  27. Eviatar, A., McNutt, Jr, R. L., Siscoe, G. L., and Sullivan, J. D.: 1983, Heavy ions in the outer kronian magnetosphere, J. Geophys. Res. 88, 823–831.ADSGoogle Scholar
  28. Eviatar, A.: 1982, The plumes of Titan, J. Geophys. Res. 87, 8091.ADSGoogle Scholar
  29. Eviatar, A. and Richardson, J. D.: 1992, Water-group plasma in the magnetosphere of Saturn, Ann. Geophys., 8, 725, 1990.ADSGoogle Scholar
  30. Eviatar, A., and J.D. Richardson, Thermal plasma in the inner kronian magnetosphere, Ann. Geophys. 10, 511–518.Google Scholar
  31. Festou, M. F. and Shemansky, D.: 2000, private communication.Google Scholar
  32. Fox, J. L. and Yelle, R. V.: 1997, A new model of the ionosphere of Titan, Geophys. Res. Lett. 24, 2179.ADSCrossRefGoogle Scholar
  33. Franck, L. A., Bureck, B. G., Ackerson, K. L., Wolfe, J. H., and Mihalov, J. D.: 1980, Plasma in Saturn's magnetosphere, J. Geophys. Res. 85, 5695–5708.ADSGoogle Scholar
  34. Galand, M., Lilensten, J., Toublanc, D. and Maurice, S.: 1999, The ionosphere of Titan: Ideal diurnal and nocturnal cases, Icarus, 140, 92–105.ADSCrossRefGoogle Scholar
  35. Galopeau, P. and Zarka, P.: 1992, Reply to the comment by J. E. P. Connerney and M. D. Desch on 'Evidence of Saturn's magnetic field anomaly from SKR high-frequency limit', J. Geophys. Res., 97, 12291–12297.ADSGoogle Scholar
  36. Galopeau, P., Zarka, P. and Le Quéau, D.: 1995, Source location of SKR: The Kelvin-Helmholtz instability hypothesis, J. Geophys. Res. 100, 26397–26410.ADSCrossRefGoogle Scholar
  37. Galopeau, P., Zarka, P. and Le Quéau, D.: 1989, Theoretical model of Saturn's kilometric radiation spectrum, J. Geophys. Res. 94, 8739–8755.ADSCrossRefGoogle Scholar
  38. Gan, L., Keller, C. N. and Cravens, T. E.: 1992, Electrons in the ionosphere of Titan, J. Geophys. Res. 97, 12137.ADSGoogle Scholar
  39. Gan-Baruch, Z., Eviatar, A., Richardson, J. D., and McNutt, Jr., R. L.: 1994, Plasma observations near the ring plane of Saturn, J. Geophys. Res. 99, 11063.ADSCrossRefGoogle Scholar
  40. Geballe, T. R., Jagod, M.-F. and Oka, T.: 1993, Detection of H3+ infrared emission lines in Saturn, Astrophys. J. 408, L109.ADSCrossRefGoogle Scholar
  41. Gérard, J. C., Dols, V., Grodent, D., Waite, J. H., Gladstone, G. R., and Prangé, R.: 1995, Simultaneous observations of the Saturnian aurora and polar haze, with the HST/FOC, Geophys. Res. Lett. 22, 2685.ADSCrossRefGoogle Scholar
  42. Goertz, C. K.: 1983, Detached plasma in Saturn's front side magnetosphere, Geophys. Res. Lett. 10, 455–458.ADSGoogle Scholar
  43. Goertz, C. K. and Morfill, G.: 1983, A model for the formation of spokes in Saturn's ring, Icarus 53, 219–229.ADSCrossRefGoogle Scholar
  44. Gombosi, T. I., DeZeeuw, D. L., Häberli, R. M., and Powell, K. G.: 1996, Three-dimensional multiscale MHD model of cometary plasma environments, J. Geophys. Res. 101(A7), 15233–15253.ADSCrossRefGoogle Scholar
  45. Gombosi, T.I., DeZeeuw, D. L., Groth, C. P. T., and Powell, K. G.: 2000, Magnetospheric configuration for Parker-spiral IMF conditions: Results of a 3D AMR MHD simulation, Adv. Space Res. 26(1), 139–149.ADSCrossRefGoogle Scholar
  46. Gombosi, T.I., DeZeeuw, D. L., Groth, C. P. T., Hansen, K. C., Kabin, K., and Powell, K. G.: 2000, in R. Fujii, M. Hesse, R. Lysak, and S. Ohtani (eds.), MHD simulations of current systems in planetary magnetospheres: Mercury and Saturn, in Magnetospheric Current Systems, AGU monograph, 118, 363-370.Google Scholar
  47. Gurnett, D. A., Kurth, W. S. and Scarf, F. L.: 1981a, Plasma Waves near Saturn: Initial Results from Voyager 1, Science 212, 235.ADSGoogle Scholar
  48. Gurnett, D. A., Kurth, W. S. and Scarf, F. L.: 1981, Narrowband Electromagnetic Emissions from Saturn's Magnetosphere, Nature, 292, 733.ADSCrossRefGoogle Scholar
  49. Gurnett, D. A., Scarf, F. L. and Kurth, W. S.: 1982, The structure of Titan's wake from plasma wave observations, J. Geophys. Res. 87, 1395–1403.ADSGoogle Scholar
  50. Gurnett, D. A., Kurth, W. S., Roux, A., Bolton, S. J., and Kennel, C. F.: 1996, Evidence for a magnetosphere at Ganymede from plasma wave observations by the Galileo spacecraft, Nature 382, 535–537.ADSCrossRefGoogle Scholar
  51. Hall, D. T., Feldman, P. D., Holberg, J. B., and McGrath, M. A.: 1996, Fluorescent hydroxyl emissions from Saturn's ring atmosphere, Science 272, 516–518.ADSGoogle Scholar
  52. Hamilton, D. P. and Burns, J. A.: 1994: Origin of Saturn's E ring: Self sustained, naturally, Science 264, 550–553.ADSGoogle Scholar
  53. Hartle, R. E., Sittler, Jr, E. C., Ogilvie, K. W., Scudder, J. D., Lazarus, A. J. and Atreya, S. K.: 1982, Titan's ion exosphere observed from Voyager 1, J. Geophys. Res. 87, 1383–1394.ADSGoogle Scholar
  54. Hartle, R. E. et al.: 1983, Titan's ion exosphere observed from Voyager 1, J. Geophys. Res. 87, 1383.ADSGoogle Scholar
  55. Hansen, K. C., Gombosi, T. I., DeZeeuw, D. L., Groth, C. P. T., and Powell, K. G.: 1999, A 3D global MHD simulation of Saturn's magnetosphere, Adv. Space Res. 26, 1681–1690.ADSCrossRefGoogle Scholar
  56. Hunten, D. M., Tomasko, M. G., Flasar, F. M., Samuelson, R. E., Strobel, D. F., and Stevenson, D. J.: 1984, Titan, in Saturn, edited by T. Gehrels and M. S. Matthews, University of Arizona Press, Tucson, pp. 671–759.Google Scholar
  57. Ip, W. H.: 1983, Equatorial confinement of thermal plasma near the rings of Saturn, Nature 302, 599–600.ADSCrossRefGoogle Scholar
  58. Ip, W. H.: 1990, Titan's upper ionosphere, Astophys. J. 362, 354–363.ADSCrossRefGoogle Scholar
  59. Ip, W. H.: 1992, Plasma interaction of Titan with the Saturnian magnetosphere: A review of a critical issue, Proceedings of the Symposium on Titan, ESA SP-338, pp. 243–253.Google Scholar
  60. Ip, W. H.: 1995, The exospheric systems of Saturn's rings, Icarus 115, 295–303.ADSCrossRefGoogle Scholar
  61. Ip, W. H. and Mendis, D. A.: 1983, On the equatorial transport of Saturn's ionosphere as given by a dust-ring current system, Geophys. Res. Lett. 10, 207.ADSGoogle Scholar
  62. Johnson, R. E. and Sittler, Jr., E. C.: 1990, Sputter-produced plasma as a measure of satellite surface composition: The Cassini mission, Geophys. Res. Lett. 17, 1629.ADSGoogle Scholar
  63. Johnson, R. E.: 1990, Energetic charged particle interactions with atmospheres and surfaces, in Physics and Chemistry in Space, vol.19, Planetology, Springer-Verlag, New-York, 232 pp.Google Scholar
  64. Johnson, R. E., Pospieszalska, M. K., Sittler Jr., E. C., Cheng, A. F., Lanzerotti, L. J., and Sieveka, E. M.: 1989, The neutral cloud and heavy ion inner torus at Saturn, Icarus 77, 311–329.ADSCrossRefGoogle Scholar
  65. Jurac, S., Johnson, R. E., Richardson, J. D., and Paranicas, C.: 2001a Satellite sputtering in Saturn's magnetosphere, Planet. Space Sci. 49, 319.ADSCrossRefGoogle Scholar
  66. Jurac, S., Johnson, R. E. and Richardson, J. D.: 2001b, Saturn's E Ring and Production of the Neutral Torus, Icarus 149, 384.ADSCrossRefGoogle Scholar
  67. Jurac, S., McGrath, M. A., Johnson, R. E., Richardson, J. D., Vasyliunas, V. M., Eviator, A.: 2002, Saturn: search for a missing water source, Geophys. Res. Lett., submitted.Google Scholar
  68. Kabin et al.: 1999, Interaction of the Saturnian magnetosphere with Titan: Results of a threedimensional MHD simulation, J. Geophys. Res. 104, 2451.ADSCrossRefGoogle Scholar
  69. Kabin, K., Gombosi, T. I., De Zeeuw, D. L., Powell, K. G., and Israelevich, P. L.: 1999, Interaction of the Saturnian magnetosphere with Titan: Results of a three-dimensional MHD simulation, J. Geophys. Res. 104(A2), 2451–2458.ADSCrossRefGoogle Scholar
  70. Kaiser, M. L, Desch, M. D. and Connerney, J. E.P.: 1984, J. Geophys. Res. 89, 2371.ADSGoogle Scholar
  71. Kaiser, M. L., Desch, M. D., Kurth, W. S., Lecacheux, A., Genova, F., Pedersen, B. M., and Evans, D. R.: 1984, in T. Gehrels and M. S. Matthews (eds.), Saturn as a radio source, in 'saturn', Univ. of Ariz. Press, Tucson, pp. 378–415.Google Scholar
  72. Keller, C. N., Cravens, T. E. and Gan, L.: 1992, A model of the ionosphere of Titan, J. Geophys. Res. 97, 117.Google Scholar
  73. Keller, C. N., Cravens, T. E. and Gan, L.: 1994a, One-dimensional multispecies magnetohydrodynamic models of the ramside ionosphere of Titan, J. Geophys. Res. 99, 6511.ADSCrossRefGoogle Scholar
  74. Keller, C. N., Cravens, T. E. and Gan, L.: 1994b, One dimensional multispecies hydrodynamic models of the wakeside ionosphere of Titan, J. Geophys. Res. 99, 6527.ADSCrossRefGoogle Scholar
  75. Keller, C. N., Anicich, V. G. and Cravens, T. E.: 1998, Model of Titan's ionosphere with detailed hydrocarbon ion chemistry, Planet. Space Sci. 46, 1157.ADSCrossRefGoogle Scholar
  76. Kivelson, M. G. and Russell, C. T.: 1983, The interaction of flowing plasmas with planetary ionospheres: A Titan-Venus comparison, J. Geophys. Res 88, 49–57.ADSGoogle Scholar
  77. Kivelson, M. G., Khurana, K. K., Russell, C. T., Walker, R. J., Warnecke, J., Coroniti, F. V., Polanskey, C., Southwood, D. J., and Schubert, G.: 1996, Discovery of Ganymede's magnetic field by the Galileo spacecraft, Nature 384, 537.ADSCrossRefGoogle Scholar
  78. Kliore, A. J. et al.: 1980, Structure of the ionosphere and atmosphere of Saturn from Pioneer 11 Saturn radio occultation, J. Geophys. Res. 85, 5857.ADSGoogle Scholar
  79. Kliore, A. J., Hindon, D. P., Flasar, F. M., Nagy, A. F., and Cravens, T. E.: 1997, The ionosphere of Europa from Galileo radio observations, Science 277, 355.ADSCrossRefGoogle Scholar
  80. Krimigis, S. M., Carbary, J. F., Keath, E. P., Armstrong, T. P., Lanzerotti, L. J. and Gloeckler, G.: 1983, General characteristics of hot plasma and energetic particles in the Saturnian magnetosphere: results from the Voyager spacecraft, J. Geophys. Res. 88, 8871–8892.ADSGoogle Scholar
  81. Krimigis, S. M., Armstrong, T. P., Axford, W. I., Bostrom, C. O., Gloeckler, G., Keath, E. P., Lanzerotti, L. J., Carbary, J. F., Hamilton, D. C., and Roelof, E. C.: 1981, Low-energy charged particles in Saturn's magnetosphere: Results from Voyager 1, Science 212, 225.ADSGoogle Scholar
  82. Kurth, W. S., Scarf, F. L., Gurnett, D. A. and Barbosa, D. D.: 1983, A Survey of Electrostatic Waves in Saturn's Magnetosphere, J. Geophys. Res. 88, 8959.ADSGoogle Scholar
  83. Kurth, W. S. and Gurnett, D. A.: 1991, PlasmaWaves in Planetary Magnetospheres, J. Geophys. Res. 96,18,977.Google Scholar
  84. Ladreiter, H. P., Galopeau, P. H. M. and Zarka, P.: 1994, The magnetic field anomaly of Saturn, International Symposium On 'Magnetospheres Of Outer Planets', Graz, Austria, 8/1994.Google Scholar
  85. Lazarus, A. J. and McNutt, Jr., R. L.: 1983, Low-energy plasma ion observations in Saturn's magnetosphere, J. Geophys. Res. 88, 8831.ADSGoogle Scholar
  86. Lecacheux, A., Galopeau, P. and Aubier, M.: 1997, in H. O. Rucker, S. J. Bauer and A. Lecacheux (eds.), Revisiting Saturnian kilometric radiation with Ulysses, in “Planetary Radio Emissions IV”, Austrian Acad. Sci. press, Vienna, pp. 313–325.Google Scholar
  87. Ledvina, S.A. and Cravens, T. E.: 1998, A three-dimensional MHD model of plasma flow around Titan, Planet. Space Sci. 46, 1175.ADSCrossRefGoogle Scholar
  88. Lepping, R. P., Burlaga, L. F. and Klein, L. W.: 1981, Surface waves on Saturn's magnetopause, Nature 292, 750–753.ADSCrossRefGoogle Scholar
  89. Luhmann, J. G., Russell, C. T., Schwingenschuh, K., and Yeroshenko, Ye.: 1991, A comparison of induced magnetotails of planetary bodies: Venus, Mars, Titan, J. Geophys. Res. 96, 11, 199–11, 208.Google Scholar
  90. Ma, T. Z., Gurnett, D. A. and Goertz, C. K.: 1987 Interpretation of electrostatic noise observed by Voyager 1 in Titan's wake, J. Geophys. Res. 92, 8595.ADSGoogle Scholar
  91. Macek, W. M., Kurth, W. S., Lepping, R. P., and Sibeck, D. G.: 1992, Distant magnetotails of outer magnetic planets, Adv. Space Res. 12(8), 47.ADSCrossRefGoogle Scholar
  92. Majeed, T. and McConnell, J. C.: 1991, The upper ionosphere of Jupiter and Saturn, Planet. Space Sci. 39, 1715.ADSCrossRefGoogle Scholar
  93. Majeed, T. and McConnell, J. C.: 1996, Voyager electron density measurements on Saturn: Analysis with a time dependent ionospheric model, J. Geophys. Res. 101, 7589.ADSCrossRefGoogle Scholar
  94. Mauk, B. H, Krimigis, S. M., Mitchell, D. G., Roelof, E. C., Keath, E. P. and Dandouras, J.: 1998, Imaging Saturn's dust rings using energetic neutral atoms, Planet. Space Sci. 46(9/10), 1349–1362.ADSCrossRefGoogle Scholar
  95. Mauk, B. H., Krimigis, S. M. and Lepping, R. P.: 1985, Particle and field stress balance within a planetary magnetosphere, J. Geophys. Res. 90, 8253.ADSGoogle Scholar
  96. Maurice, S., Blanc, M., Prangé, R., and Sittler, Jr, E. C.: 1997, The magnetic-field-aligned polarization electric field and its effects on particle distribution in the magnetospheres of Jupiter and Saturn, Planet. Space Sci. 45(11), 1449–1465.ADSCrossRefGoogle Scholar
  97. Maurice, S. and Engle, I. M.: 1995, Idealized Saturn magnetosphere shape and field, J. Geophys. Res. 100, 17143.ADSCrossRefGoogle Scholar
  98. Maurice, S., Engle, I. M., Blanc, M. and Skubis, M.: 1996, The geometry of Saturn's magnetopause model, J. Geophys. Res. 101, 27053.ADSCrossRefGoogle Scholar
  99. Maurice, S., Sittler, E. C., Cooper, J. F., Mauk, B. H., Blanc, M., and Selesnick, R. S.: 1996, Comprehensive analysis of electron observations at Saturn: Voyager 1 and 2, J. Geophys. Res. 101, 15211–15232.ADSCrossRefGoogle Scholar
  100. McKibben, R. B. and Simpson, J. A.: 1980, Charged particle diffusion and acceleration in Saturn's radiation belts, J. Geophys. Res. 85, 5773–5783.ADSGoogle Scholar
  101. McCord, T. M. et al.: 1999, Hydrated salt minerals on Europa's surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation, J. Geophys. Res. 104, 11827.ADSCrossRefGoogle Scholar
  102. Mc Elroy, M. B.: 1973, The ionospheres of the major planets, Space Sci. Rev. 14, 460.ADSCrossRefGoogle Scholar
  103. McLennan, C. G., Lanzerotti, L. J., Krimigis, S. M., Lepping, R. P., and Ness, N. F.: 1982, Effects of Titan on trapped particles in Saturn's magnetosphere, J. Geophys. Res. 87, 1411–1418.ADSGoogle Scholar
  104. Nagy, A. F., Barakat, A. R. and Schunk, R. W.: 1986, is Jupiter's ionosphere a significant plasma source for its magnetosphere? J. Geophys. Res. 91, 351.ADSGoogle Scholar
  105. Nagy, A. F., Cravens, T. E. and Waite, Jr., J. H.: 1995, All ionospheres are not alike: Reports from other planets, Rev. Geophys., Suppl., US Natl. Report to IUGG 1991–1995, pp. 525–533.Google Scholar
  106. Nagy, A. F. et al.: 2001, The interaction between the magnetosphere of Saturn and Titan's ionosphere, J. Geophys. Res. 106, 6151–6160.ADSCrossRefGoogle Scholar
  107. Nagy, A. F. and Cravens, T. E.: 1998, Titan's ionosphere: A review, Planet. Space Sci. 46, 1149.ADSCrossRefGoogle Scholar
  108. Ness, G. D., Acuña, M. H., Lepping, R. P., Connerney, J. E. P., Behannon, K. W., Burlaga, L. F., and Neubauer, F. M.: 1981, Magnetic field studies by Voyager 1: Preliminary results at Saturn, Science 212, 211.ADSGoogle Scholar
  109. Ness, G. D., Acuña, M. H., Lepping, R. P., Connerney, J. E. P., Behannon, K. W., Burlaga, L. F., and Neubauer, F. M.: 1982, Magnetic field studies by Voyager 2: Preliminary results at Saturn, Science 215, 558.ADSGoogle Scholar
  110. Ness, N. F., Acuna, M. H., Behannon, K.W. and Neubauer, F. M.: 1982, The induced magnetosphere of Titan, J. Geophys. Res. 87, 1369–1381.ADSGoogle Scholar
  111. Neubauer, F.: 1998, The sub-Alfvenic interaction of the Galilean satellites with the Jovian magnetosphere, J. Geophys. Res 103, 19843–19866.ADSCrossRefGoogle Scholar
  112. Neubauer, F. M., Gurnett, D. A., Scudder, J. D., and Hartle, R. E.: 1984, in T. Gehrels and M. S. Matthews (eds.), Titan's magnetospheric interaction, in 'saturn', Univ. of Ariz. Press, Tucson, pp. 760–787.Google Scholar
  113. Northrop, T. G. and Birmingham, T. J.: 1990, Plasma drag on a dust grain due to coulomb collisions, Planet. Space Sci. 38(3),319–326.ADSCrossRefGoogle Scholar
  114. Paranicas, C., Cheng, A. F., Mauk, B. H., Keath, E. P., and Krimigis, S. M.: 1997, Evidence of a source of energetic ions at Saturn, J. Geophys. Res. 102, 17459–17466.ADSCrossRefGoogle Scholar
  115. Pospieszalska, M. and Johnson, R. E.: 1989, Plasma ion bombardment profiles: Europa and Dione, Icarus 78, 1.ADSCrossRefGoogle Scholar
  116. Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., and DeZeeuw, D. L.: 1999, A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., bf 154,284–309.zbMATHMathSciNetADSCrossRefGoogle Scholar
  117. Randall, B. A.: 1994, Energetic electrons in the magnetosphere of Saturn, J. Geophys. Res. 99, 87771.ADSGoogle Scholar
  118. Richardson, J. D., Eviatar, A. and Siscoe, G. L.: 1986, Satellite tori at Saturn, J. Geophys. Res. 91, 8749–8755.ADSGoogle Scholar
  119. Richardson, J. D., Eviatar, A., McGrath, M. A., and Vasyliunas, V. M.: 1998, OH in Saturn's magnetosphere: Observations and implications, J. Geophys. Res. 103, 20245–20555.ADSCrossRefGoogle Scholar
  120. Richardson, J. D.: 1995, An extended plasma model for Saturn, Geophys. Res. Lett. 22, 1177–1180.ADSCrossRefGoogle Scholar
  121. Richardson, J. D., Sittler, Jr, E. C.: 1990, A plasma density model for Saturn based on Voyager observations, J. Geophys. Res. 95, 12019–12031.ADSGoogle Scholar
  122. Richardson, J. D.: 1986, Thermal ions at Saturn: plasma parameters and implications, J. Geophys. Res. 91, 1381–1389.ADSGoogle Scholar
  123. Richardson, J. D.: 1998, Thermal plasma and neutral gas in Saturn's magnetosphere, Rev. Geophys., 36(4), 501–524.ADSCrossRefGoogle Scholar
  124. Roboz, A. and Nagy, A.F.: 1994, The energetics of Titan's ionosphere, J. Geophys. Res. 99, 2087.ADSCrossRefGoogle Scholar
  125. Sandel, B.R. et al.: 1982, Extreme ultraviolet observations from Voyager 2 encounter with Saturn, Science 215, 548–553.ADSGoogle Scholar
  126. Saur, J., Neubauer, F. M., Strobel, D. F. and Summers, M. E.: 1999, Three-dimensional plasma simulation of Io's interaction with the Io plasma torus: Asymmetric plasma flow, J. Geophys. Res. 104, 25105–25126.ADSCrossRefGoogle Scholar
  127. Saur, J., Strobel, D. F., Neubauer, F. M.: 1998, Interaction of the jovian magnetosphere with Europa: Constraints on the neutral atmosphere, J. Geophys. Res. 103, 19947.ADSCrossRefGoogle Scholar
  128. Scarf, F. L., Gurnett, D. A., Kurth, W. S. and Poynter, R. L.: 1982, Voyager-2 Plasma Wave Observations at Saturn, Science 215, 587.ADSGoogle Scholar
  129. Scarf, F. L., Frank, L. A., Gurnett, D. A., Lanzerotti, L. J., Lazarus, A. and Sittler, Jr., E. C.: 1984, in T. Gehrels and M. S. Matthews (eds.), Measurements of plasma, plasma waves, and suprathermal charged particles in Saturn's inner magnetosphere, in 'saturn', Univ. of Ariz. Press, Tucson, pp. 318–353.Google Scholar
  130. Schardt, A. Wand McDonald, F. B.: 1983, The flux and source of energetic protons in Saturn's inner magnetosphere, J. Geophys. Res. 88, 8923–8935.ADSGoogle Scholar
  131. Schardt, A. W., Kurth, W. S., Lepping, R. P. and McClennan, C. G.: 1985, Particle acceleration inSaturn's outer magnetosphere: In memoriam Alois Schardt, J. Geophys. Res. 90, 8539–8542.ADSGoogle Scholar
  132. Schardt, A. W., Behannon, K. W., Lepping, R. P., Carbary, J. F., Eviatar, A., and Siscoe, G. L.: 1984, in T. Gehrels and M. S. Matthews (eds.), The outer magnetosphere in Saturn, University of Arizona Press, Tuscon, p. 416.Google Scholar
  133. Shemansky, D. E. and Hall, D. T.: 1992, The distribution of atomic hydrogen in the magnetosphere of Saturn, J. Geophys. Res. 27, 4143–4161.ADSGoogle Scholar
  134. Shemansky, D. E., Matheson, P., Hall, D. T., Hu, H.-Y., and Tripp, T. M.: 1993, Detection of the hydroxyl radical in the Saturn magnetosphere, Nature 363, 329–331.ADSCrossRefGoogle Scholar
  135. Shi, M., Baragiola, A., Grosjean, D. E., Johnson, R. E., Jurac, S., and Schou, J.: 1995, Sputtering of water ice surfaces and the production of extended neutral atmospheres, J. Geophys. Res. 100, 26387–26395.ADSCrossRefGoogle Scholar
  136. Simpson, J. A., Bastian, T. S., Chenette, D. L., McKibben, R. B., and Pyle, K. R.: 1980, The trapped radiations of Saturn and their absorption by satellites and rings, J. Geophys. Res. 85, 5731.ADSGoogle Scholar
  137. Sittler Jr, E. C., Ogilvie, K. W. and Scudder, J. D.: 1983, Survey of low energy electrons in Saturn's magnetosphere: Voyagers 1 and 2, J. Geophys. Res. 88, 8847.ADSGoogle Scholar
  138. Slavin, J. A., Smith, E. J., Gazis, P. R. and Mihalov, J. D.: 1983, A Pioneer-Voyager study of the solar wind interaction with Saturn, Geophys. Res. Lett. 10, 9.ADSGoogle Scholar
  139. Smith, E. J. and Tsurutani, B. T.: 1983, Saturn's magnetosphere: Observations of ion cyclotron waves near the Dione L shell, J. Geophys. Res. 88, 7831.ADSGoogle Scholar
  140. Southwood, D. J., Dougherty, M. K., Leamon, R. J., and Haynes, P. L.: 1995, Origin and dynamics of field nulls detected in giant planet magnetospheres, Adv. Space Res. 16, 4177.CrossRefGoogle Scholar
  141. Tagger, M., Henriksen, R. N. and Pellat, R.: 1991, On the nature of the spokes in Saturn's rings, Icarus 91, 297–314.ADSCrossRefGoogle Scholar
  142. Trauger, J. T. et al.: 1998, Saturn's hydrogen aurora: WFPC2 imaging from the HST, J. Geophys. Res. 103, 20237.ADSCrossRefGoogle Scholar
  143. Tsintikidis, D., Kurth, W. S., Gurnett, D. A., and Barbosa, D. D.: 1995, A Study of Dust in the Vicinity of Dione Using the Voyager 1 Plasma Wave Instrument, J. Geophys. Res. 100, 1811.ADSCrossRefGoogle Scholar
  144. Van Allen, J. A., Randall, B. A. and Thomsen, M. F.: 1980, Sources and Sinks of energetic electrons and protons in Saturn's magnetosphere, J. Geophys. Res. 85, 5679–5684.ADSGoogle Scholar
  145. Vasyliunas, V. M.: 1995, in A. J. Dessler (ed.) Physics of the Jovian Magnetosphere, Cambridge University Press, Cambridge, p. 395.Google Scholar
  146. Wagener, R. and Caldwell, J. J.: 1986, IUE observations of Saturn's rings, Proc. Joint NASA/ESA/SERC Conference on new insights in Astrophysics, ESA SP-269.Google Scholar
  147. Waite, Jr., J. H. and Cravens, T. E.: 1987, Current review of the Jupiter, Saturn, and Uranus ionospheres, Adv. Space Res. 7(12), 119.ADSCrossRefGoogle Scholar
  148. Wilson, G. R. and Waite, Jr., J. H.: 1989, Kinetic modeling of the Saturn ring-ionosphere plasma environment, J. Geophys. Res. 94, 17286.ADSGoogle Scholar
  149. Wilson, G. R.: 1991, The plasma environment, charge state, and currents of Saturn's C and D rings, J. Geophys. Res. 96, 9689–9701.ADSGoogle Scholar
  150. Wolf, D. and Neubauer, F. M.: 1982, Titan's highly variable plasma environment, J. Geophys. Res. 87, 881–885.ADSGoogle Scholar
  151. Zarka, P.: 1992, in H. O. Rucker et al. (eds.), Remote probing of auroral plasmas, in 'Planetary Radio Emissions III', Austrian Acad. Sci. Press, Vienna, pp. 351–369.Google Scholar
  152. Zarka, P.: 1998, Auroral radio emissions at the outer planets: Observations and theories, J. Geophys. Res., 103, 20159–20194.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • M. Blanc
    • 1
  • S. Bolton
    • 2
  • J. Bradley
    • 2
  • M. Burton
    • 2
  • T.E. Cravens
    • 3
  • I. Dandouras
    • 4
  • M.K. Dougherty
    • 5
  • M.C. Festou
    • 1
  • J. Feynman
    • 2
  • R.E. Johnson
    • 6
  • T.G. Gombosi
    • 7
  • W.S. Kurth
    • 8
  • P.C. Liewer
    • 2
  • B.H. Mauk
    • 9
  • S. Maurice
    • 1
  • D. Mitchell
    • 9
  • F.M. Neubauer
    • 10
  • J.D. Richardson
    • 11
  • D.E. Shemansky
    • 12
  • E.C. Sittler
    • 13
  • B.T. Tsurutani
    • 2
  • Ph. Zarka
    • 14
  • L.W. Esposito
    • 15
  • E. Grün
    • 16
  • D.A. Gurnett
    • 8
  • A.J. Kliore
    • 2
  • S.M. Krimigis
    • 9
  • D. Southwood
    • 5
  • J.H. Waite
    • 17
  • D.T. Young
    • 7
  1. 1.Observatoire Midi-PyrénéesToulouseFrance
  2. 2.Jet Propulsion LaboratoryPasadena
  3. 3.University of KansasLawrence
  4. 4.CESRToulouseFrance
  5. 5.The Blackett LaboratoryImperial CollegeLondonU.K
  6. 6.University of VirginiaCharlottesville
  7. 7.Department of Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn Arbor
  8. 8.Department of Physics and AstronomyUniversity of IowaIowa City
  9. 9.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurel
  10. 10.Institute for Geophysics and MeteorologyKöln UniversityKölnGermany
  11. 11.Center for Space ResearchMITCambridge
  12. 12.Department of Aerospace EngineeringUniversity of Southern CaliforniaLos Angeles
  13. 13.Goddard Space Flight CenterGreenbelt
  14. 14.DESPA, Observatoire de Paris-MeudonMeudonFrance
  15. 15.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulder
  16. 16.Max-Planck-Institut für KernphysikHeidelbergGermany
  17. 17.Southwest Research InstituteSan Antonio

Personalised recommendations