Advertisement

Applied Categorical Structures

, Volume 11, Issue 2, pp 157–169 | Cite as

Toward an Elementary Axiomatic Theory of the Category of LP-Matroids

  • Talal Ali Al-Hawary
  • D. George McRae
Article

Abstract

The purpose of this paper is to provide the beginnings of an elementary theory for the category of loopless pointed matroids and strong maps. We propose a finite set of elementary axioms that is the beginning of an elementary axiomatic theory for this category.

category matroid strong map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Hawary, T. and McRae, D. G.: Completeness and cocompleteness in the category of LP-matroids, submitted.Google Scholar
  2. 2.
    Al-Hawary, T. and McRae, D. G.: Discrete objects in the category of LP-matroids, submitted.Google Scholar
  3. 3.
    Brylawski, T. and Kelly, D.: Matroids and Combinatorial Geometries, University of North Carolina at Chapel Hill, 1980.Google Scholar
  4. 4.
    Crapo, H.: Constructions in combinatorial geometries, N.S.F. Advanced Seminar, Bowdoin College Notes, 1971.Google Scholar
  5. 5.
    Dugundji, J.: Topology, Allyn and Bacon, Dubuque, 1966.Google Scholar
  6. 6.
    Herrlich, H. and Strecker, G.: Category Theory, Allyn and Bacon, Boston, 1973.Google Scholar
  7. 7.
    Higgs, D.: Strong maps of geometries, Journal of Combinatorial Theory 5 (1968), 185–191.Google Scholar
  8. 8.
    Kung, J.: A Source Book in Matroid Theory, Birkhäuser, Boston, 1986.Google Scholar
  9. 9.
    Mac Lane, S.: Categories for the Working Mathematician, Springer-Verlag, New York, 1971.Google Scholar
  10. 10.
    Oxley, J.: Matroid Theory, Oxford University Press, New York, 1992.Google Scholar
  11. 11.
    Schlomiuk, D.: An elementary theory of the category of topological spaces, Transactions of the American Mathematical Society 149 (1970), 259–278.Google Scholar
  12. 12.
    Squire, R.: A duality for the category of directed multigraphs, Comptes Rendus Mathématiques Reports de l'Académie des Sciences Canada 17 (1995), 147–152.Google Scholar
  13. 13.
    Suppes, P.: Axiomatic Set Theory, Van Nostrand, New York, 1996.Google Scholar
  14. 14.
    Trnková, V.: Strong embeddings of the category of graphs into topological categories, in recent advances in graph theory, in Proceedings of the Second Czechoslovak Symposium, Prague, 1974, Academia, Prague, 1975, pp. 511–515.Google Scholar
  15. 15.
    White, N. (ed.): Theory of Matroids, Cambridge University Press, New York, 1986.Google Scholar
  16. 16.
    Whitney, H.: On the abstract properties of linear dependence, American Journal of Mathematics 57 (1935), 509–533.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Talal Ali Al-Hawary
    • 1
  • D. George McRae
    • 2
  1. 1.Department of MathematicsMu'tah UniversityKarakJordan
  2. 2.Department of Mathematical SciencesThe University of MontanaMissoulaU.S.A

Personalised recommendations