Advertisement

Applied Categorical Structures

, Volume 11, Issue 2, pp 117–124 | Cite as

Joins in the Frame of Nuclei

  • Martín H. Escardó
Article

Abstract

Joins in the frame of nuclei are hard to describe explicitly because a pointwise join of a set of closure operators on a complete lattice fails to be idempotent in general. We calculate joins of nuclei as least fixed points of inflationary operators on prenuclei. Using a recent fixed-point theorem due to Pataraia, we deduce an induction principle for joins of nuclei. As an illustration of the technique, we offer a simple (and also intuitionistic) proof of the localic Hofmann–Mislove Theorem.

frame locale compactness nuclei closure operator common fixed point Hofmann–Mislove Theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banaschewski, B.: Another look at the localic Tychonoff theorem, Commentationes Mathematicae Universitatis Carolinae 29(4) (1988), 647–656.Google Scholar
  2. 2.
    Dowker, C. H. and Papert, D.: Quotient frames and subspaces, Proceedings of the London Mathematical Society 16(3) (1966), 275–296.Google Scholar
  3. 3.
    Escardó, M. H.: The regular-locally-compact coreflection of stably locally compact locale, Journal of Pure and Applied Algebra 157(1) (2001), 41–55.Google Scholar
  4. 4.
    Hofmann, K. H. and Mislove, M.: Local compactness and continuous lattices, in B. Banaschewski and Hoffmann, R.-E. (eds.), Continuos Lattices, Lecture Notes in Math., Vol. 871, 1981, pp. 209–248.Google Scholar
  5. 5.
    Isbell, John R.: Atomless parts of spaces, Mathematica Scandinavica 31 (1972), 5–32.Google Scholar
  6. 6.
    Johnstone, P. T.: Topos Theory, Academic Press, London, 1977. @@@@@@Google Scholar
  7. 7.
    Johnstone, P. T.: Stone Spaces, Cambridge University Press, Cambridge, 1982.Google Scholar
  8. 8.
    Johnstone, P. T.: Vietoris locales and localic semilattices, in Continuous Lattices and their Applications (Bremen, 1982), Dekker, New York, 1985, pp. 155–180.Google Scholar
  9. 9.
    Johnstone, P. T.: Two notes on nuclei, Order 7(2) (1990), 205–210.Google Scholar
  10. 10.
    Keimel, K. and Paseka, J.: A direct proof of the Hofmann–Mislove theorem, Proceedings of the American Mathematical Society 120(1) (1994), 301–303.Google Scholar
  11. 11.
    MacNab, D. S.: Modal operators on Heyting algebras, Algebra Universalis 12(1) (1981), 5–29.Google Scholar
  12. 12.
    Pataraia, D.: A constructive proof of Tarski's fixed-point theorem for dcpo's. Presented at the 65th Peripatetic Seminar on Sheaves and Logic, Aarhus, Denmark, November 1997.Google Scholar
  13. 13.
    Simmons, H.: An algebraic version of Cantor–Bendixson analysis, in Categorical Aspects of Topology and Analysis (Ottawa, ON, 1980), Springer, Berlin, 1982, pp. 310–323.Google Scholar
  14. 14.
    Simmons, H.: Near-discreteness of modules and spaces as measured by Gabriel and Cantor, Journal of Pure and Applied Algebra 56(2) (1989), 119–162.Google Scholar
  15. 15.
    Taylor, P.: Practical Foundations of Mathematics, Cambridge University Press, Cambridge, 1999.Google Scholar
  16. 16.
    Vickers, S. J.: Constructive points of powerlocales, Mathematical Proceedings of the Cambridge Philosophical Society 122(2) (1997), 207–222.Google Scholar
  17. 17.
    Wilson, J. T.: The Assembly Tower and Some Categorical and Algebraic Aspects of Frame Theory, Ph.D. Thesis, School of Computer Science, Carnegie Mellon University, May 1994.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Martín H. Escardó
    • 1
  1. 1.School of Computer ScienceUniversity of BirminghamBirminghamUK

Personalised recommendations