Journal of Bioenergetics and Biomembranes

, Volume 35, Issue 1, pp 57–65 | Cite as

Putative Functions of Nucleoside Diphosphate Kinase in Plants and Fungi

  • Kohji Hasunuma
  • Naoto Yabe
  • Yusuke Yoshida
  • Yasunobu Ogura
  • Tohru Hamada


The putative functions of NDP (nucleoside diaphosphate) kinases from various organisms focusing to fungi and plants are described. The biochemical reactions catalyzed by NDP kinase are as follows. (i) Phosphotransferring activity from mainly ATP to cognate NDPs generating nucleoside triphosphates (NTPs). (ii) Autophosphorylation activity from ATP and GTP. (iii) Protein kinase (phosphotransferring) activity phosphorylating such as myelin basic protein. NDP kinase could function to provide NTPs as a housekeeping enzyme. However, recent works proved possible functions of the NDP kinases in the processes of signal transduction in various organisms, as described below. By use of the extracts of the mycelia of a filamentous fungus Neurospora crassa blue-light irradiation could increase the phosphorylation of a 15-kDa protein, which was purified and identified to be NDP kinase (NDK-1). By use of the etiolated seedlings of Pisum sativum cv Alaska and Oryza sativa red-light irradiation of intact plants increased the phosphorylation of NDP kinase. However, successive irradiation by red–far-red reversed the reaction, indicating that phytochrome-mediated light signals are transduced to the phosphorylation of NDP kinase. NDP kinase localizing in mitochondria is encoded by nuclear genome and different from those localized in cytoplasm. NDP kinase in mitochondria formed a complex with succinyl CoA synthetase. In Spinicia oleraceae two different NDP kinases were detected in the chloroplast, and in Pisum sativum two forms of NDP kinase originated from single species of mRNA could be detected in the choloroplast. However, the function of NDP kinases in the choloroplast is not yet known. In Neurospora crassa a Pro72His mutation in NDP kinase (ndk-1 Pro72His ) deficient in the autophosphorylation and protein kinase activity resulted in lacking the light-induced polarity of perithecia. In wild-type directional light irradiation parallel to the solid medium resulted in the formation of the perithecial beak at the top of perithecia, which was designated as “light-induced polarity of perithecia.” In wild-type in darkness the beak was formed at random places on perithecia, and in ndk Pro72His mutant the perithecial beak was formed at random places even under directional light illumination. The introduction of genomic DNA and cDNA for ndk-1 demonstrated that the wild-type DNAs suppressed the mutant phenotype. With all these results except for the demonstration in Neurospora, most of the phenomena are elusive and should be solved in the molecular levels concerning with NDP kinases.

Awd (Abnormal wing disc formation) non-metastatic (nm)23 GTP-binding protein light signal transduction phytochrome protein phosphorylation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berg, P., and Joklik, W. K. (1953). Nature 172, 1008-1009.PubMedGoogle Scholar
  2. Bominaar, A. A., Molijn, A. C., Pestel, M., Veron, M., and Van Hastert, P. J. M. (1993). EMBO J. 12, 2275-2279.PubMedGoogle Scholar
  3. Capaldi, R. A., Gonzalez-Halphen, D., and Takamiya, S. (1986). FEBS Lett. 207, 11-17.PubMedGoogle Scholar
  4. Choi, G., Yi, H., Lee, J., Kwon, Y. K., Soh, M. S., Shin, B., Luka, Z., Hahn, T.-R., and Song, P. S. (1999). Nature 401, 610-613.PubMedGoogle Scholar
  5. Cumsky, M. G., Trueblood, C. E., Ko, C., and Poyton, R. O. (1987). Mol. Cell. Biol. 7: 3511-3519.PubMedGoogle Scholar
  6. Dumas, C., Lascu, I., Moréra, S., Glaser, P., Fourme, R., Wallet, V., Lacombe, M.-L., Véron, M., and Janin, J. (1992). EMBO J. 11, 3203-3208.PubMedGoogle Scholar
  7. Finan, P. M., White, I. R., Redpath, S. H., Findlay, J. B. C., and Millner, P. A. (1994). Plant Mol. Biol. 25, 59-67.PubMedGoogle Scholar
  8. Fukuchi, T., Nikawa, J., Kimura, N., and Watanabe, K. (1993). Gene. 129, 141-146.PubMedGoogle Scholar
  9. Hamada, T., and Hasunuma, K. (1994). J. Photochem. Photobiol. B 24, 163-167.Google Scholar
  10. Hamada, T., Hasunuma, K., and Komatsu, S. (1999). Biol. Pharm. Bull. 22, 122-126.PubMedGoogle Scholar
  11. Hamada, T., Tanaka, N., Noguchi, T., Kimura, N., and Hasunuma, K. (1996). J. Photochem. Photobiol. B 33: 143-151.PubMedGoogle Scholar
  12. Harris, N., Taylor, J. E., and Roberts, J. A. (1994). Plant Mol. Biol. 25, 739-742.PubMedGoogle Scholar
  13. Hasunuma, K. (2000).Plant Morphol. 12, 39-51.Google Scholar
  14. Ito, K., Hamada, T., and Hasunuma, K. (1995). J. Photochem. Photobiol. B:28, 223-227.Google Scholar
  15. Izumiya, H., and Yamamoto, M. (1995). J. Biol. Chem. 270, 27589-27864.PubMedGoogle Scholar
  16. Krebs, H. A., and Hems, R. (1953). Biochim. Biophys. Acta 12, 172-180.PubMedGoogle Scholar
  17. Lacombe, M. L., Wallet, V., Troll, H., and Véron, M. (1990). J. Biol. Chem. 265, 10012-10018.PubMedGoogle Scholar
  18. Lascu, I., Deville-Bonne, D., Glaser, P., and Véron, M. (1993). J. Biol. Chem. 268, 20268-20275.PubMedGoogle Scholar
  19. Lübeck, J., and Soll, J. (1995). Planta 196: 668-673.PubMedGoogle Scholar
  20. Moisyadi, S., Dharmasiri, S., Harrington, H. M., and Lukas, T. J. (1994). Plant Physiol. 104, 1401-1409.PubMedGoogle Scholar
  21. Nato, A., Mirshahi, A., Tichtinsky, G., Mirshahi, M., Faure, J. P., Lavergne, D., de Buyser, J., Ducreux, G., and Henry, Y. (1997). Plant Physiol. 113, 801-807.PubMedGoogle Scholar
  22. Nomura, T., Fukui, T., and Ichikawa, A. (1991). Biochim. Biophys. Acta 1077, 47-55.PubMedGoogle Scholar
  23. Nomura, T., Yatsunami, K., Honda, A., Sugimoto, Y., Fukui, T., Zhang, J., Yamamoto, J., and Ichikawa, A. (1992). Arch. Biochem. Biophys. 297, 42-45.PubMedGoogle Scholar
  24. Oda, K., and Hasunuma, K. (1994). FEBS Lett. 345, 162-166.PubMedGoogle Scholar
  25. Oda, K., and Hasunuma, K. (1997). Mol. Gen Genet. 256, 593-601.PubMedGoogle Scholar
  26. Ogura, T., Tanaka, N., Yabe, N., Komatsu, S., and Hasunuma, K. (1999a). Photochem. Photobiol. 69: 397-403.Google Scholar
  27. Ogura, Y., Yoshida, Y., Ichimura, K., Aoyagi, C., Yabe, N., and Hasunuma, K. (1999b). Eur. J. Biochem. 266, 709-714.PubMedGoogle Scholar
  28. Ogura, Y., Yoshida, Y., Yabe, N., and Hasunuma, K. (2001). J. Biol. Chem. 276, 21228-21234.PubMedGoogle Scholar
  29. Power, S. D., Lochrie, M. A., and Poyton, R. O. (1984). J. Biol. Chem. 259, 6575-6578.PubMedGoogle Scholar
  30. Sellam, O., Veron, M., and Hildebrandt, M. (1995). Mol. Microbiol. 6, 79-85.Google Scholar
  31. Sommer, D., and Song, P. S. (1994). Biochim. Biophys. Acta. 1222, 464-470.PubMedGoogle Scholar
  32. Sweetlove, L. J., Mowday, B., Hebestreit, H. F., Leaver, C. J., and Millar, A. H. (2001). FEBS Lett. 508, 272-276.PubMedGoogle Scholar
  33. Tanaka, N., Ogura, T., Noguchi, T., Hirano, H., Yabe, N., and Hasunuma, K. (1998). J. Photochem. Photobiol. B 45, 113-121.Google Scholar
  34. Tepper, A. D., Dammann, H., Bominaa, A. A., and Véron, M. (1994). J. Biol. Chem. 269, 32175-32180.PubMedGoogle Scholar
  35. Troll, H., Winckler, T., Lascu, I., Müller, N., Saurin, W., Véron, M., and Mutzel, R. (1993). J. Biol. Chem. 268, 25469-25475.PubMedGoogle Scholar
  36. Wallet, V., Mutzel, R., Troll, H., Barzu, O., Wurster, B., Véron, M., and Lacombe, M. L. (1990). J. Natl. Cancer Inst. 82, 1199-1202.PubMedGoogle Scholar
  37. Xu, Y., Moréra, S., Janin, J., and Cherfils, J. (1997a). Proc. Natl. Acad. Sci. U.S.A. 94, 3579-3583.PubMedGoogle Scholar
  38. Xu, Y., Sellam, O., Morera, S., Sarfati, S., Biondi, R., Véron, M., and Janin, J. (1997b). Proc. Natl. Acad. Sci. U.S.A. 94, 7162-7165.PubMedGoogle Scholar
  39. Yano, A., Shimazaki, T., Kato, A., Umeda, M., and Uchimiya, H. (1993). Plant Mol. Biol. 23, 1087-1093.PubMedGoogle Scholar
  40. Yano, A., Umeda, M., and Uchimiya, H. (1995). Plant Mol. Biol. 27, 1053-1058.PubMedGoogle Scholar
  41. Zhang, J., Fukui, T., and Ichikawa, A. (1995). Biochim. Biophys. Acta 1248, 19-26.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Kohji Hasunuma
    • 1
  • Naoto Yabe
    • 1
  • Yusuke Yoshida
    • 1
  • Yasunobu Ogura
    • 1
  • Tohru Hamada
    • 1
  1. 1.Kihara Institute for Biological Research and Graduate School of Integrated ScienceYokohama City University Maioka-choTotsuka-ku, YokohamaJapan

Personalised recommendations