Molecular Breeding

, Volume 11, Issue 4, pp 287–293 | Cite as

Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants

  • Po-Yen Chen
  • Chen-Kuen Wang
  • Shaw-Ching Soong
  • Kin-Ying To
Article

Abstract

The widely used expression vector pBI121 for plant transformation was reconstructed, and the complete sequence of 14758 bp is now available (accession number AF485783). The T-DNA region (6193 bp) contains the right border, expression cassettes for a neomycin phosphotransferase II (NPTII) selection marker and a β-glucuronidase (GUS) reporter gene, and the left border. The non-T-DNA region (8565 bp) was constructed according to the Bin 19 vector. We applied the vector information to clone the plant/T-DNA junction region from three independent transgenic tobacco plants. Knowledge of the complete sequence of this vector will be useful for an accurate description of vector size, determination of the integrity of T-DNA, identification of independent lines, the locus where it is inserted, the T-DNA copy number in those stable transformants, or construction of a smaller vector. In addition, the complete sequence (5667 bp) of the transient expression vector pBI221 (accession number AF502128) carrying the ampicillin resistance and gus reporter genes is also reported.

Agrobacterium-mediated transformation Binary vector pBI121 Plant/T-DNA junction sequence Transient expression vector pBI221 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arabidopsis Genome Initiative 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.Google Scholar
  2. Beck E., Ludwig G., Auerswald E.A., Reiss B. and Schaller H. 1982. Nucleotide sequence and extract localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19: 327–336.Google Scholar
  3. Datla R.S.S., Hammerlindl J.K., Panchuk B., Pelcher L.E. and Keller W. 1992. Modified binary plant transformation vectors with wild-type gene encoding NPTII. Gene 122: 383–384.Google Scholar
  4. De Buck S., Jacobs A., Van Montagu M. and Depicker A. 1999. The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J. 20: 295–304.Google Scholar
  5. Does M.P., Dekker B.M.M., de Groot M.J.A. and Offringa R. 1991. A quick method to estimate the T-DNA copy number in transgenic plants at an early stage after transformation, using inverse PCR. Plant Mol. Biol. 17: 151–153.Google Scholar
  6. Frisch D.A., Harris-Haller L.W., Yokubaitis N.T., Thomas T.L., Hardin S.H. and Hall T.C. 1995. Complete sequence of the binary vector Bin 19. Plant Mol. Biol. 27: 405–409.Google Scholar
  7. Gallagher S.R. 1992. GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic Press, San Diego.Google Scholar
  8. Goff S.A., Ricke D., Lan T.H., Presting G., Wang R. and Dunn M. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92–100.Google Scholar
  9. Hellens R., Mullineaux P. and Klee H. 2000. A guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 5: 446–451.Google Scholar
  10. Horsch R.B., Fry J.B., Hoffman N.L., Eicholts D., Rogers S.G. and Fraley R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.Google Scholar
  11. Jefferson R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.Google Scholar
  12. Jefferson R.A., Kavangh T.A. and Bevan M.W. 1987. GUS fusions: β–glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.Google Scholar
  13. Kojima M., Arai Y., Iwase N., Shirotori K., Shioiri H. and Nozue M. 2000. Development of a simple and efficient method for transformation of buckwheat plants (Fagopyrum esculentum). Biosci. Biotechnol. Biochem. 64: 845–847.Google Scholar
  14. Korányi P., Burg K. and Berényi M. 1998. Stable electrotransformation of symbiont candidate diazotrophic bacterium with plasmid carrying selectable and screenable marker genes. Res. Microbiol. 149: 361–372.Google Scholar
  15. Le V.Q., Belles-Isles J., Dusabenyagasani M. and Tremblay F.M. 2001. An improved procedure for production of white spruce (Picea glauca) transgenic plants using Agrobacterium tumefaciens. J. Exp. Bot. 52: 2089–2095.Google Scholar
  16. Lin X., Kaul S., Rounsley S., Shea T.P., Benito M.I. and Town C.D. et al. 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402: 761–768.Google Scholar
  17. Mayer K., Schüller C., Wambutt R., Murphy G., Volckaert G. and Pohl T. et al. 1999. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402: 769–777.Google Scholar
  18. McElver J., Trafrir I., Aux G., Rogers R., Ashby C., Smith K. et al. 2001. Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics 159: 1751–1763.Google Scholar
  19. Mitsuhara I., Ugaki M., Hirochika H., Ohshima M., Murakami T., Gotoh Y. et al. 1996. Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell. Physiol. 37: 49–59.Google Scholar
  20. Newell C.A. 2000. Plant transformation technology. Mol. Biotechnol. 16: 53–65.Google Scholar
  21. Niedz R.P., Sussman M.R. and Satterlee J.S. 1995. Green fluorescent protein: an in vivo reporter of plant gene expression. Plant Cell Rep. 14: 403–406.Google Scholar
  22. Park S.U. and Facchini P.J. 2000. Agrobacterium rhizogenes-mediated transformation of poppy, Papaver somniferum L., and California poppy, Eschscholzia california Cham., root cultures. J. Exp. Bot. 51: 1005–1016.Google Scholar
  23. Rohini V.K. and Sankara Rao K. 2001. Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci. 160: 889–898.Google Scholar
  24. Salanoubat M., Lemcke K., Rieger M., Ansorge W., Unseld M. and Fartmann B. et al. 2000. Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature 408: 820–822.Google Scholar
  25. Sawahel W.A. 2002. Stable genetic transformation of garlic plants using particle bombardment. Cell Mol. Biol. Lett. 7: 49–59.Google Scholar
  26. Sharma K.K. and Anjaiah V. 2000. An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci. 159: 7–19.Google Scholar
  27. Tabata S., Kaneko T., Nakamura Y., Kotani H., Kato T. and Asamizu E. et al. 2000. Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature 408: 823–826.Google Scholar
  28. Tanaka A., Mita S., Ohta S., Kyozuka J., Shimamoto K. and Nakamura K. 1990. Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is corrected with an increased level of mRNA and an efficient splicing of the intron. Nucl. Acids Res. 18: 6767–6770.Google Scholar
  29. Tang W. 2001. Agrobacterium-mediated transformation and assessment of factors influencing transgene expression in loblolly pine (Pinus taeda L.). Cell Res. 11: 237–243.Google Scholar
  30. Theologis A., Ecker J., Paim C.J., Federspiel N.A., Kaul S. and White O. et al. 2000. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature 408: 816–820.Google Scholar
  31. Tinland B. 1996. The integration of T-DNA into plant genomes. Trends Plant Sci. 1: 178–184.Google Scholar
  32. To K.Y., Cheng M.C., Chen L.F.O. and Chen S.C.G. 1996. Introduction and expression of foreign DNA in isolated chloroplasts by electroporation. Plant J. 10: 737–743.Google Scholar
  33. Yenofsky R.L., Fine M. and Pellow J.W. 1990. A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. Proc. Natl. Acad. Sci. USA 87: 3435–3439.Google Scholar
  34. Yu J., Hu S., Wang J., Wong G.K.S., Li S. and Liu B. et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79–92.Google Scholar
  35. Zheng S.J., Henken B., Sofiari E., Jacobsen E., Krens F.A. and Kik C. 2001. Molecular characterization of transgenic shallots (Allium cepa) by adaptor ligation PCR (AL-PCR) and sequencing of genomic DNA flanking T-DNA borders. Transgenic Res. 10: 237–245.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Po-Yen Chen
    • 1
  • Chen-Kuen Wang
    • 1
  • Shaw-Ching Soong
    • 1
  • Kin-Ying To
    • 1
  1. 1.Academia SinicaInstitute of BioAgricultural SciencesTaipeiTaiwan

Personalised recommendations