Bulletin of Experimental Biology and Medicine

, Volume 135, Issue 1, pp 103–105 | Cite as

Comparison of Cytotoxicity of Aminoglycoside Antibiotics Using a Panel Cellular Biotest System

  • V. G. Chernikov
  • S. M. Terekhov
  • T. B. Krokhina
  • S. S. Shishkin
  • T. D. Smirnova
  • E. A. Kalashnikova
  • N. V. Adnoral
  • L. B. Rebrov
  • Yu. I. Denisov-Nikol'skii
  • V. A. Bykov
Article

Abstract

The cytotoxicity of four aminoglycoside antibiotics was studied by estimation of the dose-effect relationship using a panel cellular biotest system including cell cultures for test objects. The cultures represented 4 differentiation types: normal human fibroblasts and myoblasts, human or Syrian hamster hepatoma cells, and mouse/mouse hybridoma cells. It was found that three widely used antibiotics gentamicin, kanamycin, and neomycin exhibit similar, but not identical cytotoxicity parameters and differ distinctly from geneticin. Hence, the proposed panel biotest system helps to quantitatively evaluate and differentiate the effects of bioactive substances with similar chemical structure.

human cell cultures biotest system aminoglycoside antibiotics cytotoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    All-Russian Collection of Cell Cultures. Catalogue [in Russian], Leningrad (1991), pp. 48–51.Google Scholar
  2. 2.
    L. S. Inozemtseva, V. G. Chernikov, E. S. Manuilova, et al., Tsitologiya, 43,No. 10, 944–953 (2001).Google Scholar
  3. 3.
    T. B. Krokhina, S. S. Shishkin, G. B. Raevskaya, et al., Byull. Eksp. Biol. Med., 122,No. 9, 314–317 (1996).Google Scholar
  4. 4.
    A. A. Kubanova, V. A. Samsonov, A. V. Rezaikina, et al., Testing of Drugs for External Use in Human Skin Cell Culture. Methodological Recommendations [in Russian], Moscow (1996).Google Scholar
  5. 5.
    M. D. Mashkovskii, Drugs [in Russian], Moscow (1993).Google Scholar
  6. 6.
    V. G. Chernikov, S. M. Terekhov, T. B. Krokhina, et al., Byull. Eksp. Biol. Med., 131,No. 6, 680–682 (2001).Google Scholar
  7. 7.
    V. G. Chernikov, S. M. Terekhov, T. B. Krokhina, et al., Biomed. Tekhnologii, No. 15, 79–84 (2001).Google Scholar
  8. 8.
    V. G. Chernikov, S. S. Shishkin, T. B. Krokhina, et al., Byull. Eksp. Biol. Med., 129,No. 5, 587–590 (2000).Google Scholar
  9. 9.
    E. R. Barton-Davis, L. Cordier, D. I. Shoturma, et al., J. Clin. Invest., 104,No. 4, 375–381 (1999).Google Scholar
  10. 10.
    H. H. Houlihan, R. C. Mercier, and M. J. Rybak, Antimicrob. Agents Chemother., 41, 2497–2501 (1997).Google Scholar
  11. 11.
    H. H. Houlihan, D. P. Stokes, and M. J. Rybak, J. Antimicrob. Chemother., 46, 79–86 (2000).Google Scholar
  12. 12.
    R. Janknegt, A. O. Lashof, I. M. Gould, and J. W. M. van der Meer, J. Antimicrob. Chemother., 45, 251–256 (2000).Google Scholar
  13. 13.
    M. Liscovitch, V. Chalifa, M. Danin, and Y. Eli, Biochem. J.,279, 319–321 (1991).Google Scholar
  14. 14.
    H. Matsuo, J. Hayashi, K. Ono, et al., Antimicrob. Agents Chemother., 41, 2597–2601 (1997).Google Scholar
  15. 15.
    P. Shehan, R. Storeng, D. Ascudiero, et al., J. Natl. Cancer Inst., 82, 1107–1112 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • V. G. Chernikov
    • 1
    • 2
  • S. M. Terekhov
    • 1
    • 2
  • T. B. Krokhina
    • 1
    • 2
  • S. S. Shishkin
    • 1
    • 2
  • T. D. Smirnova
    • 1
    • 2
  • E. A. Kalashnikova
    • 1
    • 2
  • N. V. Adnoral
    • 1
    • 2
  • L. B. Rebrov
    • 1
    • 2
  • Yu. I. Denisov-Nikol'skii
    • 1
    • 2
  • V. A. Bykov
    • 1
    • 2
  1. 1.Medical Genetic Research CenterRussian Academy of Medical SciencesRussia
  2. 2.Research Center of Biomedical TechnologiesMoscow

Personalised recommendations