Pharmaceutical Research

, Volume 20, Issue 5, pp 720–727 | Cite as

Expression and Functional Involvement of Organic Anion Transporting Polypeptide Subtype 3 (Slc21a7) in Rat Choroid Plexus

  • Hiroyuki Kusuhara
  • Zhonggui He
  • Yoshinori Nagata
  • Yoshitane Nozaki
  • Takashi Ito
  • Hiroyuki Masuda
  • Peter J. Meier
  • Takaaki Abe
  • Yuichi Sugiyama

Abstract

Purpose. It has been shown that transport(s) are involved in the uptake of estradiol 17β glucuronide (E217βG) by the choroid plexus (CP). The purpose of this study is to compare the substrate specificity of the transporter in the CP with those of rat organic anion transporting polypeptide 1 (rOatp1) and rOatp3.

Methods. The expression of rOatp1 and rOatp3 in rat CP was confirmed by RT-PCR and Western blot analyses. The substrate specificity of rOatp1 and rOatp3 was compared using cDNA-transfected LLC-PK1 cells. The uptake of E217βG by rat isolated CP was determined by centrifugal filtration technique.

Results. PCR analyses demonstrated that the mRNA expression of rOatp3 was abundant in the CP, whereas that of rOatp1 was low. Immunohistochemical staining revealed that rOatp3 is expressed on the apical membrane of the CP. Kinetic parameters (Km and Ki values) of rOatp3 were similar to those for rOatp1. The results of mutual inhibition study suggest that E217βG and taurocholate share the same mechanism in the CP. Corticosterone, estrone-3-sulfate and indomethacin are moderate inhibitors, but no effects by digoxin, p-aminohippurate, benzylpenicillin and cimetidine were observed.

Conclusions. rOatp3 is most possible candidate transporter involved in the uptake of organic anions on the brush border membrane of the choroid epithelial cells.

choroid plexus blood-CSF barrier efflux transport Oatp organic anion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    B. Gao and P. J. Meier. organic anion transport across the choroid plexus. Microsc. Res. Tech. 52:60-64 (2001).Google Scholar
  2. 2.
    R. Spector. Drug transport in the mammalian central nervous system: multiple complex systems. Pharmacol. 60:58-73 (2000).Google Scholar
  3. 3.
    J. F. Ghersi-Egea and N. Strazielle. Brain drug delivery, drug metabolism, and multidrug resistance at the choroid plexus. Microsc. Res. Tech. 52:83-88 (2001).Google Scholar
  4. 4.
    H. Kusuhara and Y. Sugiyama. Efflux transport systems for drugs at the blood-brain barrier and blood-cerebrospinal fluid barrier (Part 2). Drug Discov. Today 6:206-212 (2001).Google Scholar
  5. 5.
    H. Kusuhara and Y. Sugiyama. Efflux transport systems for drugs at the blood-brain barrier and blood-cerebrospinal fluid barrier (Part 1). Drug Discov. Today 6:150-156 (2001).Google Scholar
  6. 6.
    H. Kusuhara and Y. Sugiyama. Role of transporters in the tissue-selective distribution and elimination of drugs: transporters in the liver, small intestine, brain and kidney. J. Control. Release 78:43-54 (2002).Google Scholar
  7. 7.
    M. Haselbach, J. Wegener, S. Decker, C. Engelbertz, and H. J. Galla. Porcine Choroid plexus epithelial cells in culture: regulation of barrier properties and transport processes. Microsc. Res. Tech. 52:137-152 (2001).Google Scholar
  8. 8.
    N. Strazielle and J. F. Ghersi-Egea. Demonstration of a coupled metabolism-efflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics. J. Neurosci. 19:6275-6289 (1999).Google Scholar
  9. 9.
    J. Nishino, H. Suzuki, D. Sugiyama, T. Kitazawa, K. Ito, M. Hanano, and Y. Sugiyama. Transepithelial transport of organic anions across the choroid plexus: possible involvement of organic anion transporter and multidrug resistance-associated protein. J. Pharmacol. Exp. Ther. 290:289-294 (1999).Google Scholar
  10. 10.
    T. Kitazawa, K. Hosoya, T. Takahashi, Y. Sugiyama, and T. Terasaki. In-vivo and in-vitro evidence of a carrier-mediated efflux transport system for oestrone-3-sulphate across the blood-cerebrospinal fluid barrier. J. Pharm. Pharmacol. 52:281-288 (2000).Google Scholar
  11. 11.
    Y. Nagata, H. Kusuhara, H. Endou, and Y. Sugiyama. Expression and functional characterization of rat organic anion transporter 3 (rOat3) in the choroid plexus. Mol. Pharmacol. 61:982-988 (2002).Google Scholar
  12. 12.
    R. H. Angeletti, P. M. Novikoff, S. R. Juvvadi, J. M. Fritschy, P. J. Meier, and A. W. Wolkoff. The choroid plexus epithelium is the site of the organic anion transport protein in the brain. Proc. Natl. Acad. Sci. USA 94:283-286 (1997).Google Scholar
  13. 13.
    H. Suzuki, T. Terasaki, and Y. Sugiyama. Role of efflux transport across the blood-brain barrier and blood-cerebrospinal fluid barrier on the disposition of xenobiotics in the central nervous system. Adv. Drug Deliv. Rev. 25:257-285 (1997).Google Scholar
  14. 14.
    H. Ishizuka, K. Konno, H. Naganuma, K. Nishimura, H. Kouzuki, H. Suzuki, B. Stieger, P. J. Meier, and Y. Sugiyama. Transport of temocaprilat into rat hepatocytes: role of organic anion transporting polypeptide. J. Pharmacol. Exp. Ther. 287:37-42 (1998).Google Scholar
  15. 15.
    T. N. Abu-Zahra, A. W. Wolkoff, R. B. Kim, and K. S. Pang. Uptake of enalapril and expression of organic anion transporting polypeptide 1 in zonal, isolated rat hepatocytes. Drug Metab. Dispos. 28:801-806 (2000).Google Scholar
  16. 16.
    P. J. Meier, U. Eckhardt, A. Schroeder, B. Hagenbuch, and B. Stieger. Substrate specificity of sinusoidal bile acid and organic anion uptake systems in rat and human liver. Hepatology 26:1667-1677 (1997).Google Scholar
  17. 17.
    M. Muller and P. L. Jansen. Molecular aspects of hepatobiliary transport. Am. J. Physiol. 272:G1285-G1303 (1997).Google Scholar
  18. 18.
    C. Reichel, B. Gao, J. Van Montfoort, V. Cattori, C. Rahner, B. Hagenbuch, B. Stieger, T. Kamisako, and P. J. Meier. Localization and function of the organic anion-transporting polypeptide Oatp2 in rat liver. Gastroenterology 117:688-695 (1999).Google Scholar
  19. 19.
    P. J. Meier and B. Stieger. Bile salt transporters. Annu. Rev. Physiol. 64:635-661 (2002).Google Scholar
  20. 20.
    V. Cattori, J. E. van Montfoort, B. Stieger, L. Landmann, D. K. Meijer, K. H. Winterhalter, P. J. Meier, and B. Hagenbuch. Localization of organic anion transporting polypeptide 4 (Oatp4) in rat liver and comparison of its substrate specificity with Oatp1, Oatp2 and Oatp3. Pflugers Arch. 443:188-195 (2001).Google Scholar
  21. 21.
    T. Abe, M. Kakyo, T. Tokui, R. Nakagomi, T. Nishio, D. Nakai, H. Nomura, M. Unno, M. Suzuki, T. Naitoh, S. Matsuno, and H. Yawo. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J. Biol. Chem. 274:17159-17163 (1999).Google Scholar
  22. 22.
    H. C. Walters, A. L. Craddock, H. Fusegawa, M. C. Willingham, and P. A. Dawson. Expression, transport properties, and chromosomal location of organic anion transporter subtype 3. Am. J. Physiol. 279:G1188-G1200 (2000).Google Scholar
  23. 23.
    N. Li, D. P. Hartley, N. J. Cherrington, and C. D. Klaassen. Tissue expression, ontogeny, and inducibility of rat organic anion transporting polypeptide 4. J. Pharmacol. Exp. Ther. 301:551-560 (2002).Google Scholar
  24. 24.
    D. Sugiyama, H. Kusuhara, Y. Shitara, T. Abe, P. J. Meier, T. Sekine, H. Endou, H. Suzuki, and Y. Sugiyama. Characterization of the efflux transport of 17beta-estradiol-D-17beta-glucuronide from the brain across the blood-brain barrier. J. Pharmacol. Exp. Ther. 298:316-322 (2001).Google Scholar
  25. 25.
    H. Suzuki, Y. Sawada, Y. Sugiyama, T. Iga, and M. Hanano. Transport of cimetidine by the rat choroid plexus in vitro. J. Pharmacol. Exp. Ther. 239:927-935 (1986).Google Scholar
  26. 26.
    K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (multi) for microcomputer. J. Pharmacobiodyn. 4:879-885 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Hiroyuki Kusuhara
    • 1
  • Zhonggui He
    • 1
  • Yoshinori Nagata
    • 1
  • Yoshitane Nozaki
    • 1
  • Takashi Ito
    • 2
  • Hiroyuki Masuda
    • 2
  • Peter J. Meier
    • 3
  • Takaaki Abe
    • 4
  • Yuichi Sugiyama
    • 1
  1. 1.Department of Biopharmaceutics, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
  2. 2.Drug Metabolism & Physicochemical Property Research LaboratoryDaiichi PharmaceuticalTokyoJapan
  3. 3.Division of Clinical Pharmacology and Toxicology, Department of MedicineUniversity Hospital ZurichZurichSwitzerland
  4. 4.Division of Nephrology, Endocrinology, and Vascular Medicine, Department of MedicineTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations