Ukrainian Mathematical Journal

, Volume 54, Issue 9, pp 1492–1508 | Cite as

Averaging of Boundary-Value Problems with Parameters for Multifrequency Impulsive Systems

  • A. M. Samoilenko
  • R. I. Petryshyn
  • L. M. Lakusta


By using the averaging method, we prove the solvability of boundary-value problems with parameters for nonlinear oscillating systems with pulse influence at fixed times. We also obtain estimates for the deviation of solutions of the averaged problem from solutions of the original problem.


Average Method Fixed Time Original Problem Impulsive System Pulse Influence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Samoilenko and M. O. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995).Google Scholar
  2. 2.
    Yu. A. Mitropol'skii, A. M. Samoilenko, and N. A. Perestyuk, “On the justification of the averaging method for second-order equations with pulse influence,” Ukr. Mat. Zh., 29, No. 6, 750–762 (1977).Google Scholar
  3. 3.
    M. N. Astaf'eva, Averaging of Multifrequency Oscillating Systems with Pulse Influence [in Russian], Candidate-Degree thesis (Physics and Mathematics), Kiev (1989).Google Scholar
  4. 4.
    A. M. Samoilenko, “Averaging method in impulsive systems,” Mat. Fiz., No. 9, 101–117 (1971).Google Scholar
  5. 5.
    Ya. R. Petryshyn, “Averaging of a multipoint problem with parameters for an impulsive oscillation system,” Ukr. Mat. Zh., 52, No. 3, 419–423 (2000).Google Scholar
  6. 6.
    A. M. Samoilenko and R. I. Petryshyn, Multifrequency Oscillations of Nonlinear Systems [in Ukrainian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1998).Google Scholar
  7. 7.
    R. I. Petryshyn and T. M. Sopronyuk, “Exponential estimate for the fundamental matrix of a linear impulsive system,” Ukr. Mat. Zh., 53, No. 8, 1101–1108 (2001).Google Scholar
  8. 8.
    R. I. Petryshyn and Ya. R. Petryshyn, “Averaging of boundary-value problems for systems of differential equations with slow and fast variables,” Nelin. Kolyv., No. 1, 51–65 (1998).Google Scholar
  9. 9.
    R. Reissig, G. Sansone, and R. Conti, Qualitative Theorie Nichtlinearer Differentialgleichungen, Edizioni Cremonese, Roma (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • A. M. Samoilenko
    • 1
  • R. I. Petryshyn
    • 2
  • L. M. Lakusta
    • 2
  1. 1.Institute of MathematicsUkrainian Academy of SciencesKiev
  2. 2.Chernivtsi National UniversityChernivtsi

Personalised recommendations