Journal of Muscle Research & Cell Motility

, Volume 23, Issue 5–6, pp 483–497 | Cite as

Cardiac titin: molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium

  • Wolfgang A. Linke
  • Julio M. Fernandez

Abstract

Myocardium resists the inflow of blood during diastole through stretch-dependent generation of passive tension. Earlier we proposed that this tension is mainly due to collagen stiffness at degrees of stretch corresponding to sarcomere lengths (SLS) ≥2.2 μm, but at shorter lengths, is principally determined by the giant sarcomere protein titin. Myocardial passive force consists of stretch-velocity-sensitive (viscous/viscoelastic) and velocity-insensitive (elastic) components; these force components are seen also in isolated cardiac myofibrils or skinned cells devoid of collagen. Here we examine the cellular/myofibrillar origins of passive force and describe the contribution of titin, or interactions involving titin, to individual passive-force components. We construct force–extension relationships for the four distinct elastic regions of cardiac titin, using results of in situ titin segment-extension studies and force measurements on isolated cardiac myofibrils. Then, we compare these relationships with those calculated for each region with the wormlike-chain (WLC) model of entropic polymer elasticity. Parameters used in the WLC calculations were determined experimentally by single-molecule atomic force-microscopy measurements on engineered titin domains. The WLC modelling faithfully predicts the steady-state-force vs. extension behavior of all cardiac-titin segments over much of the physiological SL range. Thus, the elastic-force component of cardiac myofibrils can be described in terms of the entropic-spring properties of titin segments. In contrast, entropic elasticity cannot account for the passive-force decay of cardiac myofibrils following quick stretch (stress relaxation). Instead, slower (viscoelastic) components of stress relaxation could be simulated by using a Monte-Carlo approach, in which unfolding of a few immunoglobulin domains per titin molecule explains the force decay. Fast components of stress relaxation (viscous drag) result mainly from interaction between actin and titin filaments; actin extraction of cardiac sarcomeres by gelsolin immediately suppressed the quickly decaying force transients. The combined results reveal the sources of velocity sensitive and insensitive force components of cardiomyofibrils stretched in diastole.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen DG and Kentish JC (1985) The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 17: 821-840.PubMedGoogle Scholar
  2. Alper J (2002) Protein structure. Stretching the limits. Science 297: 329-331.PubMedCrossRefGoogle Scholar
  3. Anderson J, Joumaa V, Stevens L, Neagoe C, Li Z, Mounier Y, Linke WA and Goubel F (2002) Passive stiffness changes in soleus muscles from desmin knockout mice are not due to titin modifications. Pflügers Arch 444: 771-776.PubMedCrossRefGoogle Scholar
  4. Bang ML, Centner T, Forno. F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H and Labeit S (2001) The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89: 1065-1072.PubMedGoogle Scholar
  5. Bartoo ML, Linke WA and Pollack GH (1997) Basis of passivete nsion and stiffness in isolated rabbit myofibrils. Am J Physiol 273: C266-C276.PubMedGoogle Scholar
  6. Bustamante C, Marko JF, Siggia ED and Smith S (1994) Entropic elasticity of ?-phage DNA. Science 265: 1599-1600.PubMedGoogle Scholar
  7. Campbell KS and Lakie M (1998) A cross-bridge mechanism can explain the thixotropic short-range elastic component of relaxed frog skeletal muscle. J Physiol 510: 941-962.PubMedCrossRefGoogle Scholar
  8. Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J and Fernandez JM (1999) Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci USA 96: 3694-3699.PubMedCrossRefGoogle Scholar
  9. Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H and Fernandez JM (2000) Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog Biophys Mol Biol 74: 63-91.PubMedCrossRefGoogle Scholar
  10. Chiu Y-L, Ballou EW and Ford LE (1982) Internal viscoelastic loading in cat papillary muscle. Biophys J 40: 109-120.PubMedGoogle Scholar
  11. de Tombe P and ter Keurs HEDJ (1992) An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium. J Physiol 454: 619-642.PubMedGoogle Scholar
  12. Erickson HP (1994) Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc Natl Acad Sci USA 91: 10,114-10,118.CrossRefGoogle Scholar
  13. Erickson HP (1997) Stretching single protein molecules: titin is a weird spring. Science 276: 1090-1092.PubMedCrossRefGoogle Scholar
  14. Fisher TE, Marszalek PE and Fernandez JM (2000) Stretching single molecules into novel conformations using the atomic force microscope. Nature Struct Biol 7: 719-724.PubMedCrossRefGoogle Scholar
  15. Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, Granzier H and Labeit S (2000) Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res 86: 1114-1121.PubMedGoogle Scholar
  16. Fürst DO, Osborn M, Nave R and Weber K (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 106: 1563-1572.PubMedCrossRefGoogle Scholar
  17. Gautel M and Goulding D (1996) A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series. FEBS Lett 385: 11-14.PubMedCrossRefGoogle Scholar
  18. Gautel M, Lehtonen E and Pietruschka F (1996) Assembly of the cardiac I-band region of titin/connectin: expression of the cardiac-specific regions and their structural relation to the elastic segments. J Muscle Res Cell Motil 17: 449-461.PubMedCrossRefGoogle Scholar
  19. Greaser M (2001) Identification of new repeating motifs in titin. Proteins 43: 145-149.PubMedCrossRefGoogle Scholar
  20. Gutierrez-Cruz G, van Heerden AH and Wang K (2001) Modular motif, structural folds and affinity profiles of the PEVK segment of human fetal skeletal muscle titin. J Biol Chem 276: 7442-7449.PubMedCrossRefGoogle Scholar
  21. Hein S, Gaasch WH and Schaper J (2002) Giant molecule titin and myocardial stiffness. Circulation 106: 1302-1304.PubMedCrossRefGoogle Scholar
  22. Helmes M, Trombitas K, Centner T, Kellermayer M, Labeit S, Linke WA and Granzier H (1999) Mechanically driven contour-length adjustment in rat cardiac titin's unique N2B sequence: titin is an adjustable spring. Circ Res 84: 1339-1352.PubMedGoogle Scholar
  23. Higuchi H, Nakauchi Y, Maruyama K and Fujime S (1993) Characterization of beta-connectin (titin 2) from striated muscle by dynamic light scattering. Biophys J 65: 1906-1915.PubMedGoogle Scholar
  24. Hill DK (1968) Tension due to interaction between the sliding filaments in resting striated muscle. The effect of stimulation. J Physiol 199: 637-684.PubMedGoogle Scholar
  25. Improta S, Politou A and Pastore A (1996) Immunoglobulin-like modules from I-band titin: extensible components of muscle elasticity. Structure 4: 323-337.PubMedCrossRefGoogle Scholar
  26. Itoh Y, Suzuki T, Kimura S, Ohashi K, Higuchi H, Sawada H, Shimizu T, Shibata M and Maruyama K (1988) Extensible and less-extensible domains of connectin filaments in stretched vertebrate skeletal muscle sarcomeres as detected by immunofluorescence and immunoelectron microscopy using monoclonal antibodies. J Biochem 104: 504-508.PubMedGoogle Scholar
  27. Julian FJ, Sollins MR and Moss RL (1976) Absence of a plateau in length-tension relationship of rabbit papillary muscle when internal shortening is prevented. Nature 260: 340-342.PubMedCrossRefGoogle Scholar
  28. Kellermayer MSZ, Smith SB, Granzier HL and Bustamante C (1997) Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276: 1112-1116.PubMedCrossRefGoogle Scholar
  29. Kentish JC, ter Keurs HE, Ricciardi L, Bucx JJ and Noble MI (1986) Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ Res 58: 755-768.PubMedGoogle Scholar
  30. Konhilas JP, Irving TC and deTombe PP (2002) Myofilament calcium sensitivity in skinned rat cardiac trabeculae: role of interfilament spacing. Circ Res 90: 59-65.PubMedCrossRefGoogle Scholar
  31. Kulke M, Fujita-Becker S, Rostkova E, Neagoe C, Labeit D, Manstein DJ, Gautel M and Linke WA (2001a) Interaction between PEVK-titin and actin filaments: origin of a viscous force component in cardiac myofibrils. Circ Res 89: 874-881.PubMedGoogle Scholar
  32. Kulke M, Neagoe C, Kolmerer B, Minajeva A, Hinssen H, Bullard B and Linke WA (2001b) Kettin, a major source of myofibrillar stiffness in Drosophila indirect fight muscle. J Cell Biol 154: 1045-1057.PubMedCrossRefGoogle Scholar
  33. Labeit S and Kolmerer B (1995) Titins, giant proteins in charge of muscle ultrastructure and elasticity. Science 270: 293-296.PubMedGoogle Scholar
  34. Labeit S, Gautel M, Lakey A and Trinick J (1992) Towards a molecular understanding of titin. EMBO J 11: 1711-1716.PubMedGoogle Scholar
  35. Li H, Linke WA, Oberhauser AF, Carrion-Vazquez M, Kerkvliet JG, Lu H, Marszalek PE and Fernandez JM (2002) Reverse engineering of the giant muscleprote in titin. Nature 418: 998-1002.PubMedCrossRefGoogle Scholar
  36. Li H, Oberhauser AF, Fowler SB, Clarke J and Fernandez JM (2000) Atomic force microscopy reveals the mechanical design of a modular protein. Proc Natl Acad Sci USA 97: 6527-6531.PubMedCrossRefGoogle Scholar
  37. Li H, Oberhauser AF, Redick SD, Carrion-Vazquez M, Erickson HP and Fernandez JM (2001) Multiple conformations of PEVK proteins detected by single-molecule techniques. Proc Natl Acad Sci USA 98: 10,682-10,686.Google Scholar
  38. Linke WA (2000) Stretching molecular springs: elasticity of titin filaments in vertebrate striated muscle. Histol Histopathol 15: 799-811.PubMedGoogle Scholar
  39. Linke WA, Popov VI and Pollack GH (1994) Passive and active tension in single cardiac myofibrils. Biophys J 67: 782-792.PubMedCrossRefGoogle Scholar
  40. Linke WA, Bartoo ML, Ivemeyer M and Pollack GH (1996a) Limits of titin extension in single cardiac myofibrils. J Muscle Res Cell Motil 17: 425-438.PubMedCrossRefGoogle Scholar
  41. Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Rüegg JC and Labeit S (1996b) Towards a molecular understanding of the elasticity of titin. J Mol Biol 261: 62-71.PubMedCrossRefGoogle Scholar
  42. Linke WA, Ivemeyer M, Labeit S, Hinssen H, Rüegg JC and Gautel M (1997) Actin-titin interaction in cardiac myofibrils: probing a physiological role. Biophys J 73: 905-919.PubMedGoogle Scholar
  43. Linke WA, Ivemeyer M, Mundel P, Stockmeier MR and Kolmerer B (1998a) Nature of PEVK-titin elasticity in skeletal muscle. Proc Natl Acad Sci USA 95: 8052-8057.PubMedCrossRefGoogle Scholar
  44. Linke WA, Stockmeier MR, Ivemeyer M, Hosser H and Mundel P (1998b) Characterizing titin's I-band Ig domain region as an entropic spring. J Cell Sci 111: 1567-1574.PubMedGoogle Scholar
  45. Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S and Gregorio CC (1999) I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 146: 631-644.PubMedCrossRefGoogle Scholar
  46. Linke WA, Kulke M, Li H, Fujita-Becker S, Neagoe C, Manstein DJ, Gautel M and Fernandez JM (2002) PEVK domain of titin: an entropic spring with actin-binding properties. J Struct Biol 137: 194-205.PubMedCrossRefGoogle Scholar
  47. Liversage AD, Holmes D, Knight PJ, Tskhovrebova L and Trinick J (2001) Titin and the sarcomere symmetry paradox. J Mol Biol 305: 401-409.PubMedCrossRefGoogle Scholar
  48. Marko JF and Siggia ED (1995) Stretching DNA. Macromolecules 28: 8759-8770.CrossRefGoogle Scholar
  49. Maruyama K, Murakami F and Ohashi K (1977) Connectin, an elastic protein of muscle. Comparative Biochemistry. J Biochem (Tokyo) 82: 339-345.Google Scholar
  50. Minajeva A, Kulke M, Fernandez JM and Linke WA (2001) Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils. Biophys J 80: 1442-1451.PubMedGoogle Scholar
  51. Mutungi G and Ranatunga KW (1996) Tension relaxation after stretch in resting mammalian muscle fibers: stretch activation at physiological temperatures. Biophys J 70: 1432-1438.PubMedGoogle Scholar
  52. Mutungi G and Ranatunga KW (1998) Temperature-dependent changes in the viscoelasticity of intact resting mammalian (rat) fast-and slow-twitch muscle fibres. J Physiol 508: 253-265.PubMedGoogle Scholar
  53. Neagoe C, Kulke M, del Monte F, Gwathmey JK, de Tombe PP, Hajjar R and Linke WA (2002) Titin isoform switch in ischemic human heart disease. Circulation 106: 1333-1341.PubMedCrossRefGoogle Scholar
  54. Noble MIM (1977) The diastolic viscous properties of cat papillary muscle. Circ Res 40: 288-292.PubMedGoogle Scholar
  55. Oberhauser AF, Marszalek PE, Erickson HP and Fernandez JM (1998) The molecular elasticity of the extracellular matrix protein tenascin. Nature 393: 181-185.PubMedCrossRefGoogle Scholar
  56. Politou AS, Thomas DJ and Pastore A (1995) The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. Biophys J 69: 2601-2610.PubMedCrossRefGoogle Scholar
  57. Proske U and Morgan DL (1999) Do cross-bridges contributeto the tension during stretch of passive muscle? J Muscle Res Cell Motil 20: 433-442.PubMedCrossRefGoogle Scholar
  58. Ranatunga KW (2001) Sarcomeric visco-elasticity of chemically skinned skeletal muscle fibres of the rabbit at rest. J Muscle Res Cell Motil 22: 399-414.PubMedCrossRefGoogle Scholar
  59. Rief M, Gautel M, Oesterhelt F, Fernandez JM and Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276: 1109-1112.PubMedCrossRefGoogle Scholar
  60. Rief M, Fernandez JM and Gaub HE (1998) Elastically coupled twolevel systems as a model for biopolymer extensibility. Phys Rev Lett 81: 4764-4767.CrossRefGoogle Scholar
  61. Stuyvers BD, Miura M, Jin JP and ter Keurs HE (1998) Ca2+-dependence of diastolic properties of cardiac sarcomeres: involvement of titin. Progr Biophys Mol Biol 69: 425-443.CrossRefGoogle Scholar
  62. Trinick J and Tskhovrebova L (1999) Titin: a molecular control freak. Trends Cell Biol 9: 377-380.PubMedCrossRefGoogle Scholar
  63. Trombitas K, Greaser ML and Pollack GH (1997) Interaction between titin and thin filaments in intact cardiac muscle. J Muscle Res Cell Motil 18: 345-351.PubMedCrossRefGoogle Scholar
  64. Tskhovrebova L and Trinick J (2001) Flexibility and extensibility in the titin molecule: analysis of electron microscope data. J Mol Biol 310: 755-771.PubMedCrossRefGoogle Scholar
  65. Tskhovrebova L, Trinick J, Sleep JA and Simmons RM (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387: 308-312.PubMedCrossRefGoogle Scholar
  66. Urry DW (1984) Protein elasticity based on conformations of sequential polypeptides: the biological elastic fiber. J Protein Chem 3: 403-436.CrossRefGoogle Scholar
  67. Wang K (1996) Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv Biophys 33: 123-134.PubMedCrossRefGoogle Scholar
  68. Wang K, McCarter R, Wright J, Beverly J and Ramirez-Mitchell R (1993) Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring. Biophys J 64: 1161-1177.PubMedGoogle Scholar
  69. Weber KT (1997) Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation 96: 4065-4082.PubMedGoogle Scholar
  70. Weiwad WK, Linke WA and Wussling MH (2000) Sarcomere length tension relationship of rat cardiac myocytes at lengths greater than optimum. J Mol Cell Cardiol 32: 247-259.PubMedCrossRefGoogle Scholar
  71. Wu Y, Cazorla O, Labeit D, Labeit S and Granzier H. (2000) Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol 32: 2151-2162.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Wolfgang A. Linke
    • 1
  • Julio M. Fernandez
    • 2
  1. 1.Institute of Physiology and PathophysiologyUniversity of HeidelbergHeidelbergGermany
  2. 2.Department of Biological SciencesColumbia UniversityNew YorkUSA

Personalised recommendations