Advertisement

Pharmaceutical Research

, Volume 20, Issue 5, pp 826–832 | Cite as

Targeting Doxorubicin to Epidermal Growth Factor Receptors by Site-Specific Conjugation of C225 to Poly(L-Glutamic Acid) Through a Polyethylene Glycol Spacer

  • Javier Vega
  • Shi Ke
  • Zhen Fan
  • Sidney Wallace
  • Chusilp Charsangavej
  • Chun Li
Article

Abstract

Purpose. Targeted delivery of chemotherapeutic agents through antibody-polymer conjugates has met with limited success. One of the limiting factors is the loss of antibody's binding affinity upon conjugation with polymeric carriers because of lack of control over the number and site of attachment. This study aims to synthesize monovalent polymeric immunoconjugates through site-specific conjugation and to evaluate the in vitro binding activities of the resulting construct.

Methods. Antibody C225 against epidermal growth factor receptors was coupled to the terminus of a doxorubicin-bound block copolymer, poly(L-glutamic acid)-co-polyethylene glycol (PG-PEG). Western blot analysis, confocal fluorescent microscopy, and cytotoxicity assay were performed to confirm the specific binding of C225-PEG-PG-Dox to EGFR.

Results. C225 was conjugated to PEG-PG-doxorubicin conjugates by reacting sulfhydryl group introduced to C225 with vinylsulfone group introduced at the terminus of PEG-PG block copolymer. Polymeric immunoconjugate C225-PEG-PG-Dox, but not control (i.e., conjugate without antibody), selectively bound to human vulvar squamous carcinoma A431 cells that overexpress epidermal growth factor receptors. Receptor-mediated uptake of C225-PEG-PG-Dox occurred rapidly (within 5 min), whereas nonspecific uptake of PEG-PG-Dox required an extended period of time (24 h) to internalize. Binding of C225-PEG-PG-Dox to A431 cells could be blocked by pretreatment with C225 antibody. C225-PEG-PG-Dox was more potent than free doxrubicin in inhibiting the growth of A431 cells after a 6-h exposure period.

Conclusion. Site-specific conjugation of a monoclonal antibody to the terminus of a polymeric carrier enhances receptor-mediated delivery of anticancer agents.

targeting epidermal growth factor receptors doxorubicin poly(L-glutamic acid) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    D. Putnam and J. Kopecek. Polymer conjugates with anticancer activity. Adv. Polym. Sci. 122:55-123 (1995).Google Scholar
  2. 2.
    L. B. Shih, D. M. Goldenberg, H. Xuan, H. Lu, R. M. Sharkey, and T. C. Hall. Anthracycline immunoconjugates prepared by a site-specific linkage via an amino-dextran intermediate carrier. Cancer Res. 51:4192-4198 (1991).Google Scholar
  3. 3.
    C. Li. Poly(L-glutamic acid)-anticancer drug conjugates. Adv. Drug Deliv. Rev. 54:695-713 (2002).Google Scholar
  4. 4.
    G. F. Rowland, G. J. O'Neill, and D. A. L. Davies. Suppression of tumor growth in mice by drug-antibody conjugate using a novel approach to linkage. Nature 255:487-488 (1975).Google Scholar
  5. 5.
    J. S. Mann, J. C. Huang, and J. F. W. Keana. Molecular amplifiers: Synthesis and functionalization of a poly(aminopropyl)dextran bearing a uniquely reactive terminus for univalent attachment to biomolecules. Bioconjug. Chem. 3:154-159 (1992).Google Scholar
  6. 6.
    Y. Kato, N. Umemoto, Y. Kayama, H. Fukushima, Y. Takeda, T. Hara, and Y. Tsukada. A novel method of conjugation of daunomycin with antibody with a poly-L-glutamic acid derivative as intermediate drug carrier: An anti-α-fetoprotein antibody-daunomycin conjugate. J. Med. Chem. 27:1602-1607 (1984).Google Scholar
  7. 7.
    A. P. Chapman, P. Antoniw, M. Spitali, S. West, S. Stephens, and D. J. King. Therapeutic antibody fragments with prolonged in vivo half-lives. Nat. Biotech. 17:780-783 (1999).Google Scholar
  8. 8.
    A. Gabizon. Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes. Cancer Res. 52:891-896 (1992).Google Scholar
  9. 9.
    K. Kitamura, T. Takahashi, T. Yamaguchi, A. Noguchi, A. Nogichu, K.-I. Takashina, H. Tsurumi, M. Inagake, T. Toyokuni, and S.-I. Hakomori. Chemical engineering of the monoclonal antibody A7 by polyethylene glycol for targeting cancer chemotherapy. Cancer Res. 51:4310-4315 (1991).Google Scholar
  10. 10.
    X.-X. Wen, Q.-P. Wu, Y. Lu, Z. Fan, C. Charnsangavej, S. Wallace, D. Chow, and C. Li. Poly(ethylene glycol) conjugated anti-EGF receptor antibody C225 with radiometal chelator attached to the termini of polymer chains. Bioconjug. Chem. 12:545-553 (2001).Google Scholar
  11. 11.
    X.-X. Wen, Q.-P. Wu, S. Ke, L. Ellis, C. Charnsangavej, A. S. Delpassand, S. Wallace, and C. Li. Improved imaging of 111In-DTPA-poly(ethylene glycol) conjugated anti-EGF receptor antibody C225. J. Nucl. Med. 42:1530-1537 (2001).Google Scholar
  12. 12.
    H. Modjahedi and C. Dean. The receptor for EGF and its ligands: expression, prognostic value and target for therapy in cancer (review). Int. J. Oncol. 4:277-296 (1994).Google Scholar
  13. 13.
    J. Mendelsohn. Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin. Cancer Res. 3:2703-2707 (1997).Google Scholar
  14. 14.
    M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue. Polymer micelles as novel drug carrier: adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. J. Control. Release 11:269-278 (1990).Google Scholar
  15. 15.
    C. Jeppesen, J. Y. Wong, T. Kuhl, J. N. Israelachvili, N. Mullah, S. Zalipsky, and C. M. Marques. Impact of polymer tether length on multiple ligand-receptor bond formation. Science 293:465-468 (2001).Google Scholar
  16. 16.
    Y. Deguchi, A. Kurihara, and W. M. Pardridge. Retention of biological activity of human epidermal growth factor following conjugation to a blood-barrier drug delivery vector via an extended poly(ethylene glycol) linker. Bioconjug. Chem. 10:32-37 (1999).Google Scholar
  17. 17.
    G. T. Hermanson. Bioconjugate Techniques, Academic Press, San Diego, California, 1996.Google Scholar
  18. 18.
    M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue. Polymer micelles as novel drug carrier: adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. J. Control. Release 11:269-278 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Javier Vega
    • 1
  • Shi Ke
    • 1
  • Zhen Fan
    • 2
  • Sidney Wallace
    • 1
  • Chusilp Charsangavej
    • 1
  • Chun Li
    • 1
  1. 1.Division of Diagnostic ImagingThe University of Texas M. D. Anderson Cancer CenterHouston
  2. 2.Department of Experimental TherapeuticsThe University of Texas M. D. Anderson Cancer CenterHouston, Houston

Personalised recommendations