Catalysis Surveys from Asia

, Volume 7, Issue 1, pp 63–75

Oxide Semiconductor Gas Sensors

  • Noboru Yamazoe
  • Go Sakai
  • Kengo Shimanoe
Article

Abstract

Semiconductor gas sensors utilize porous polycrystalline resistors made of semiconducting oxides. The working principle involves the receptor function played by the surface of each oxide grain and the transducer function played by each grain boundary. In addition, the utility factor of the sensing body also takes part in determining the gas response. Therefore, the concepts of sensor design are determined by considering each of these three key factors. The requirements are selection of a base oxide with high mobility of conduction electrons and satisfactory stability (transducer function), selection of a foreign receptor which enhances surface reactions or adsorption of target gas (receptor function), and fabrication of a highly porous, thin sensing body (utility factor). Recent progress in sensor design based on these factors is described.

oxide semiconductor sensor SnO2 sensor design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani, Anal. Chem. 34 (1962) 1502.Google Scholar
  2. [2]
    N. Taguchi, Patent, 45-38200 (1962).Google Scholar
  3. [3]
    N. Yamazoe, J. Fuchigami, M. Kishikawa and T. Seiyama, Surf. Sci. 86 (1979) 335.Google Scholar
  4. [4]
    C. Xu, J. Tamaki, N. Miura and N. Yamazoe, Sensors Actuators B 3 (1991) 147.Google Scholar
  5. [5]
    N. Yamazoe, Y. Kurokawa and T. Seiyama, in: Proc. of Int. Meet. Chemical Sensors (1983) p. 35.Google Scholar
  6. [6]
    G. Sakai, N. Matsunaga, K. Shimanoe and N. Yamazoe, Sensors Actuators B 80 (2001) 125.Google Scholar
  7. [7]
    C. Xu, J. Tamaki, N. Miura and N. Yamazoe, J. Mater. Sci. 27 (1992) 963.Google Scholar
  8. [8]
    J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada and N. Yamazoe, J. Electrochem. Soc. 141 (1994) 2207.Google Scholar
  9. [9]
    S. Matsushima, T. Maekawa, J. Tamaki, N. Miura and N. Yamazoe, Nippon Kagakukaishi 1991 (1991) 1677.Google Scholar
  10. [10]
    S. Matsushima, Y. Teraoka, N. Miura and N. Yamazoe, Jpn. J. Appl. Phys. 27 (1988) 1798.Google Scholar
  11. [11]
    T. Maekawa, J. Tamaki, N. Miura and N. Yamazoe, Chem. Lett (1991) 575.Google Scholar
  12. [12]
    S. Matsushima, T. Maekawa, J. Tamaki, N. Miura and N. Yamazoe, Chem. Lett. (1989) 845.Google Scholar
  13. [13]
    J. Tamaki, T. Maekawa, S. Matsushima, N. Miura and N. Yamazoe, Chem. Lett. (1990) 477.Google Scholar
  14. [14]
    N. Yamazoe, Y. Kurokawa and T. Seiyama, Sensors Actuators 4 (1983) 283.Google Scholar
  15. [15]
    M. Akiyama, J. Tamaki, N. Miura and N. Yamazoe, Chem. Lett. (1991) 1611.Google Scholar
  16. [16]
    T. Maekawa, J. Tamaki, N. Miura and N. Yamazoe, Chem. Lett. (1992) 639.Google Scholar
  17. [17]
    T. Maekawa, J. Tamaki, N. Miura and N. Yamazoe, in: New Aspects of Spillover Effect in Catalysis, eds. T. Inui, K. Fujimoto, T. Uchijima and M. Masai (1993) p. 421.Google Scholar
  18. [18]
    Y. Shimizu, M. Egashira and Y. Takao, J. Electrochem. Soc. 135 (1988) 2539.Google Scholar
  19. [19]
    Y. Anno, T. Maekawa, J. Tamaki, Y. Asano, K. Hayashi, N. Miura and N. Yamazoe, Sensors Materials 5 (1993) 135.Google Scholar
  20. [20]
    M. Akiyama, Z. Zhang, J. Tamaki, N. Miura, N. Yamazoe and T. Harada, Sensors Actuators B 13-14 (1993) 619.Google Scholar
  21. [21]
    T. Nakahara, K. Takahata and S. Matsuura, Proc. Symp. Chemical Sensors (1987) 55.Google Scholar
  22. [22]
    T. Maekawa, J. Tamaki, N. Miura and N. Yamazoe, Sensors Actuators B 9 (1992) 63.Google Scholar
  23. [23]
    T. Nomura, Y. Matsuura, K. Takahata and S. Matsuura, Dig. 11th Chemical Sensor Symp. (1989) 13.Google Scholar
  24. [24]
    T. Takada and K. Komatsu, Dig. Tech. Papers of Transducers (1987) 693.Google Scholar
  25. [25]
    T. Takada, K. Suzuki and M. Nakane, Sensors Actuators B 13-14 (1993) 404.Google Scholar
  26. [26]
    Y. Okayama, Proc. 6th Sensor Symp. (1986) 101.Google Scholar
  27. [27]
    N. Yamazoe, Y. Muto and T. Seiyama, Hyomen Kagaku 5 (1984) 55.Google Scholar
  28. [28]
    H. Yamaura, J. Tamaki, K. Moriya, N. Miura and N. Yamazoe, J. Electrochem. Soc. 143 (1996) L36.Google Scholar
  29. [29]
    H. Yamaura, J. Tamaki, K. Moriya, N. Miura and N. Yamazoe, J. Electrochem. Soc. 144 (1997) L158.Google Scholar
  30. [30]
    Y. Anno, J. Tamaki, Y. Asano, K. Hayashi, N. Miura and N. Yamazoe, Hyomen Kagaku 16 (1995) 474.Google Scholar
  31. [31]
    Y. Anno, T. Maekawa, J. Tamaki, Y. Asano, K. Hayashi, N. Miura and N. Yamazoe, Sensors Actuators B 24-25 (1995) 623.Google Scholar
  32. [32]
    T. Jinkawa, Master thesis.Google Scholar
  33. [33]
    N.S. Baik, G. Sakai, N. Miura and N. Yamazoe, J. Am. Ceram. Soc. 83 (2000) 2983.Google Scholar
  34. [34]
    M. Shoyama and N. Hashimoto, Proc. Chem. Sensor Symp. 17, Suppl. B (2001) 10.Google Scholar
  35. [35]
    Y.G. Choi, G. Sakai, K. Shimanoe, N. Miura and N. Yamazoe, Sensors Actuators B (in press).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Noboru Yamazoe
    • 1
  • Go Sakai
    • 1
  • Kengo Shimanoe
    • 1
  1. 1.Faculty of Engineering SciencesKyushu UniversityKasuga-shi, FukuokaJapan

Personalised recommendations