Biological behavior of sol-gel coated dental implants

  • P. A. Ramires
  • A. Wennerberg
  • C. B. Johansson
  • F. Cosentino
  • S. Tundo
  • E. Milella


The biocompatibility of dental implants coated with titania/hydroxyapatite (HA) and titania/bioactive glass (BG) composites obtained via sol-gel process was investigated using an in vitro and in vivo model. A device for the in vitro testing of screw-shaped dental implants was developed, in order to well compare the two experimental models studying the behavior of human MG63 osteoblast-like cells seeded onto a particular geometry. The expression of some biochemical parameters of osteoblastic phenotype (alkaline phosphatase specific activity, collagen and osteocalcin production) and some indications on cells morphology obtained by scanning electron microscopy were evaluated. The in vitro and in vivo models were compared after implants insertion in rabbit tibia and femur. The removal torque and histomorphometric parameters (percentage of bone in contact with implant surface and the amount of bone inside the threaded area) were examined. A good agreement was found between the in vitro and in vivo models. These experiments showed better performances of HA and BG sol-gel coated dental implants with respect to uncoated titanium; in particular, it was found that in vitro the HA coating stimulates osteoblastic cells in producing higher level of ALP and collagen, whereas in vivo this surface modification resulted in a higher removal torque and a larger bone-implant contact area. This behavior could be ascribed to the morphology and the chemical composition of the implants with rough and bioactive surfaces.


Osteocalcin Osteoblastic Cell Dental Implant Osteoblastic Phenotype Histomorphometric Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Puleo and A. Nanci, Biomaterials 20 (1999) 2311-2321.Google Scholar
  2. 2.
    N. D. Spencer and M. Textor, Surface modification, surface analysis, and biomaterials, in “Materials in Medicine”, edited by M. O. Speidel and P. Uggowitzer (ETH, Zürich, 1997) pp. 209-233.Google Scholar
  3. 3.
    J. Lincks, B. D. Boyan, C. R. Blanchard, C. H. Lohmann, Y. Liu, D. L. Cochran, D. D. Dean and Z. Schwartz, Biomaterials 19 (1998) 2219-2232.Google Scholar
  4. 4.
    K. Webb, V. Hlady and P. A. Tresco, J. Biomed. Mater. Res. 41 (1998) 422-430.Google Scholar
  5. 5.
    D. M. Brunette, Int. J. Oral Maxillofac Implants 3 (1988) 231-246.Google Scholar
  6. 6.
    S. D. Cook, K. A. Thomas, K. Dalton, T. S. Volkman, T. S. Whitecloud and J. E. Kay, J. Biomed. Mater. Res. 26 (1992) 989-1001.Google Scholar
  7. 7.
    L. Hench, in “Bioceramics: Materials Characteristics Versus In Vivo Behavior”, edited by P. Ducheyne and J. Lemons, Ann. NY. Acad. Sci. 523 (1988) 54-71.Google Scholar
  8. 8.
    K. De Groot, in “Bioceramics of calcium phosphate”, edited by K. de Groot (CRC Press, Boca Raton, 1983), pp. 99-114.Google Scholar
  9. 9.
    P. Ducheyne and Q. Qiu, Biomaterials 20 (1999) 2287-2303.Google Scholar
  10. 10.
    W. R. Lacefield, Ann. NY Acad. Sci. 523 (1988) 72-80.Google Scholar
  11. 11.
    J. C. G. Wolke, J. M. A. De Blieck-Hogervost, W. J. A. Dhert, C. P. A. T. Clein and K. J. De Groot, Therm. Spray Techn. 1 (1992) 75-82.Google Scholar
  12. 12.
    K. Yamashita, T. Yagi and T. Umegaki, J. Am. Ceram. Soc. 79(12) (1996) 3313-3316.Google Scholar
  13. 13.
    K. C. Dee, D. C. Rueger, T. T. Andersen and R. Bizios, Biomaterials 17 (1996) 209-215.Google Scholar
  14. 14.
    P. Li and K. De Groot, J. Sol-Gel Sci. Technol. 2 (1994) 797-801.Google Scholar
  15. 15.
    D. B. Haddow, P. F. James and R. Van Noort, J. Mater. Sci. Mater. Med. 7 (1996) 255-260.Google Scholar
  16. 16.
    M. M. Pereira, A. E. Clark and L. L. Hench, J. Biomed. Mater. Res. 28 (1994) 693-698.Google Scholar
  17. 17.
    J. Pérez-Pariente, F. Balas, J. Román, A. J. Salinas and M. Vallet-Regí, ibid. 47 (1999) 170-175.Google Scholar
  18. 18.
    E. Milella, F. Cosentino, A. Licciulli and C. Massaro, Biomaterials 22(11) (2001) 1425-1431.Google Scholar
  19. 19.
    F. Cosentino, C. Massaro, A. Licciulli, A. Mevoli, P. Rotolo and E. Milella, Coatings of sol-gel derived bioactive glass/titania composite, 15th European Conference on Biomaterials, Bordeaux (France), September 8–12, 1999.Google Scholar
  20. 20.
    P. A. Ramires, A. Romito, F. Cosentino and E. Milella, Biomaterials 22(12) (2001) 1467-1474.Google Scholar
  21. 21.
    P. A. Ramires, P. Torricelli, F. Cosentino, G. Giavaresi, R. Giardino and E. Milella, J. Materi. Sci.: Mater. Med. 13 (2002) 797-801.Google Scholar
  22. 22.
    P. A. Ramires, A. Giuffrida and E. Milella, Biomaterials 23(2) (2001) 397-406.Google Scholar
  23. 23.
    C. Massaro, M. A. Baker, F. Cosentino, P. A. Ramires, S. Klose and E. Milella, J. Biomed. Mater. Res. (Appl. Biomater.) 58(6) (2001) 651-657.Google Scholar
  24. 24.
    B. J. Walsh, S. C. Thornton, R. Penny and S. Breit, Anal. Biochem. 203 (1992) 187-190.Google Scholar
  25. 25.
    J. C. Dubois, C. Souchier, M. L. Couble, P. Exbrayat and M. Lissac, Biomaterials 20 (1999) 1841-1849.Google Scholar
  26. 26.
    A. Wennerberg, T. Albrektsson and J. Lausmaa, J. Biomed. Mater. Res. 30 (1996) 251-260.Google Scholar
  27. 27.
    M. Gottlander, C. B. Johansson and T. Albrektsson, Clin. Oral Impl. Res. 8 (1997) 345-351.Google Scholar
  28. 28.
    A. Wennerberg, A. Ektessabi, T. Albrektsson, C. Johansson and B. A. Andersson, Int. J. Oral Maxillofac Implants 12 (1997) 486-494.Google Scholar
  29. 29.
    J. Y. Martin, Z. Schwartz, T. W. Hummert, D. M. Schraub, J. Simpson, J. Lankford, D. D. Dean, D. L. Cochran and B. D. Boyan, J. Biomed. Mater. Res. 29 (1995) 389-401.Google Scholar
  30. 30.
    S. Vercaigne, J. G. C. Wolke, I. Naert and J. A. Jansen, Biomaterials 19 (1998) 1093-1099.Google Scholar
  31. 31.
    A. Curtis and C. Wilkinson, ibid. 18 (1997) 1573-1583.Google Scholar
  32. 32.
    T. Peltola, M. Patsi, H. Rahiala, I. Kangasniemi and A. Yli-Urpo, J. Biomed. Mater. Res. 48(3) (1998) 504-510.Google Scholar
  33. 33.
    M. Jokinen, M. Pätsi, H. Rahiala, T. Peltola, M. Ritala and J. B. Rosenholm, ibid. 42 (1998) 295-302.Google Scholar
  34. 34.
    P. Li, C. Ohtsuki, T. Kokubo, K. Nakanish, N. Soga and K. De Groot, ibid. 28 (1994) 7-15.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • P. A. Ramires
    • 1
  • A. Wennerberg
    • 2
  • C. B. Johansson
    • 2
  • F. Cosentino
    • 1
  • S. Tundo
    • 3
  • E. Milella
    • 1
  1. 1.PASTIS-CNRSM, Biomaterials Unit, S.SBrindisiItaly
  2. 2.Department of Biomaterials/Handicap ResearchInstitute for Surgical Sciences, Göteborg UniversityGöteborgSweden
  3. 3.IME-CNRLecceItaly

Personalised recommendations